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Chapter 21

Tangent Properties of Circles

)OINTS TO REMEMBER
Some Results (Theorems)
Theorem 1. The tangent at any point of a circle and o)
the radius through the point are perpendicular to each other.
Given. A circlé with centre O, AB is a tangent to the circle at .
a point P and OP is the radius through P. 3 il
To prove. OP L AB. ' A PraotQ B
Construction. Take a point Q, other than P, on tangent AB. Join OQ.
Proof.
Statement _ Reason

T T Ty

B
. oo
S
W

. Since Q is a point on tangent AB, other Tangent at P intersects the circle at point P only.

pointR.
S R = 00 A part is less than its whole.
= OP <0Q OR = OP = radius.

. Thus, OP is shorter than any other line

s LR L AR Of all line segments drawn from O to line AB,the

than the point P, so Q will be outside
the circle.
. OQ will intersect the circle at some

segment joining O to any point of AB.

perpendicular is the shortest.

Hence, the radius OP is perpendicular to tangent at P.

Theorem 2. If two circles touch each other, the point of
contact lies on the straight line through their centres.

Case 1. When the given two circles touch each other
externally.

Given. Two circles with centres A and B, touching each other
externally at a point P.

To prove. P lies on line AB.
Construction. At the point P, draw a common tangent PT to the two circles. Join AP and BP.
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Proof. “ K as
Statement % Reason
1. ZAPT=90° Radius through the point of contact is
perpendicular to the tangent. '
Z. ZBEL T Same as above.
3. ZAPT + ZBPT = 180° Adding 1 and 2.
= £APB = 180°
= APB is a straight line.
| - PliesonlineAB.
Case II. When the given two circles touch each other internally. t‘ .
*  Given. Two circles with centres A and B, touching each other :
. internally ata pointP. i
§ To prove. P lies on line AB. |
?@‘ Construction. At the point P, draw a common tangent PT.
B  JoinAPand BP.
Proof.

Statement Reason
. AR CPY Radius through the point of contact is
perpendicular to the tangent.
2.0 B PY Same as above.
3. AP and BP are both perpendicular to From 1 and 2. {

the same line PT.
. AP and BP lie in the same line

—> ABP is a straight line.

. P lies on line AB. . A
Theorem 3. If two tangents are drawn to a circle from an exterior point, then [[
(i) the tangents are equal in length; -
(ii) the tangents subtend equal angles at the centre, _ T
(iii) the tangents are equally inclined to the line joining the point and the centre of the circle. :
Given. PA and PB are two tangents drawn to a circle with | ;
centre O, from an exterior point P. F
To prove.

(i) PA = PB, P s
(i) ZAOP = ZBOP, T
(iii) ZAPO = ZBPO. ﬁ
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Lo

l§

Proof.

. In AAOP and ABOP :

Statement Reason

OA =0B Radii of the same circle.
ZOAP=Z0BP=90° Radius through point of contact is perpendicular:-
| _ to the tangent.
QR =0P common.
.. AAOP = ABOP S.S.A. (axiom of congruency)
). Hence, we have
(7) PA = PB c.p.c.t.
(il) £LAOP = £BOP CHEL
(i) SAPD=L2BP0 . c.p.cit
- Intersecting chords and Tangents : A

(a) Segments of a chord : \

(i) IfPis a point on a chord AB of a circle, then we say that B
P divides AB internally into two segments PA and PB.

(i) If AB is a chord of a circle and P is a point on AB produced, \ b
we say that P divides AB externally into two segments PA

and PB.

Alternate Segments :

In the given figure, PAT is a tangent to the circle at a point A B
and AB is a chord.

The chord AB divides the circle into two segments, namely
ADB and BCA, called the alternate segments.

For ZBAT, the alternate segment is BCA.
For ZBAP, the alternate segment is ADB.

-«
Some more Results (Theorems) P

A g

Theorem 1. If two chords of a circle intersect internally or externally, then the products of
the lengths of their segments are equal.

Case 1. When the two chords intersect internally.
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Given. Two chords AB and CD of a circle intersect each
other at a point P inside the circle. |

To prove. PA x PB = PC x PD.
Construction. Join AC and BD.

Proof.

Statement | Reason

1. In AAPC and ADPB,

() ZAPC=ZDPB Vert. opp. angles
(i) £ZPAC = ZP1)B | angles in the same segment.
. AAPC ~ ADPB By AA-similarity axiom. ¥
o L I;E; = ]f:(]; Corresponding sides of similar A s are propm:tion' |

= PA x PB = PC x PD.
Thus, in this case PA x PB = PC x PD.

Case 1I. When the two chords intersect externally s

Given. Two chords AB and CD of a circle,
when produced, intersect each other at a point
P, outside the circle.

To prove. PA x PB = PC x PD.

Gl e B % . T
S - :

? Construction. Join AC and BD.

i

% Proof.

e,@, Statement Reason

= B
/| 1. In APDB and APAC, | ,
E (i) ZPDB = ZPAC Exterior angle of a cyclic quad. = Int. opp. angle}
it '

% (i) £LBBD= £PCA Exterior angle of a cyclic quad. = Int. opp. angle

. APDB ~ APAC By A A-similarity axiom.
PL P8 N ke S | .
2. PA . PC Corresponding sides of similar A s are proportional

= PA X PB.= PC X PD.
.. In this case also, PA x PB = PC x PD.

Hence, in both the cases, we have PA x PB = PC x PD.
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Theorem 2. If a chord and a tangent
- intersect externally, then the product of the
lengths of segments of the chord is equal to
the square of the length of the tangent from
the point of contact to the point of

intersection.

Given. A circle with centre O and tangent to
the circle at a point T intersects the chord

AB produced at a point P outside the circle.

To prove. PA x PB = PT2.

Construction. Draw OL L AB. Join OB, OP and OT.

Proof.
Statement Reason
1. AL=LB Perpendicular from the centre bisects the chord.
G il Radius through the point of contact is perpendicular

3. PAx PB = (PL + AL) - (PL - LB)
= (PL + LB) - (PL - LB)
= PL? - LB?
= (OP? - OL?) - LB?
= OP? - (OL? + LB?)

= OP? - OB?
= OP? - OT?
= PT?

.. PA x PB = PT2

to the tangent.

AL =LB, from 1.

From right A OLP, OP? = OL? + PLZ.
From right A OLB, OL? + LB% = OB2.

OB = OT (Radii of the same circle)

A OTP is right triangle from 2, and so OP? = OT4
+ PT2.

Theorem 3. The angle between a tangent
and a chord through the point of contact is
equal to an angle in the alternate segment.

Given. A circle with centre O and PAT is the
tangent at A. Through A, chord AB is drawn.
Points C and D are taken in alternate

segments BA and AB respectively.
To prove. (i) LBAT = ZACB and
(if) £BAP = ZADB.

Construction. Draw the diameter AOE and join EB.
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Proof. = 4
Statement | ' Reason
1. InAABE,
'ZABE=90° Angle in a semi-circle.
- ZAEB+ ZEAB=90° ...(I) Sum of the Zs of a A 1s 180°.
P Z/EAT = 90° Diameter through the point of contact is perpen
cular to the tangent.
= /EAB + ZBAT=90° ...(II) ZEAT = ZEAB + £ZBAT
3. .. ZAEB+ ZEAB=ZEAB + ZBAT From (I) and (II).
= ZAEB=ZBAT
4. But, ZAEB=ZACB Angles in the same segment.
5. .. ZBAT=/ZACB From 3 and 4.
This proves one part of the theorem.
6. Now, ZBAP + ZBAT = 180°
=51 ARAPROEA GBS0 ZBAT=/ZACB
7. Also, ZADB + ZACB=180° Opposite Zs of a cyclic quadrilateral.
8. .. Z/BAP+/ACB=/ZADB+ ZACB From 6 and 7.
= Z/BAP = ZADB ...(IIT)
This proves the second result. ; i i

‘Hence, ZBAT = ZACB and ZBAP = ZADB.

EXERCISE 21 (A) -. In right AOAP, i,
Q. 1. Find the length of the tangent drawn to | OP2 = OA? + AP?
a circle of radius 8 cm., from a point | (Pythagoras Theorem|
which is at a distance of 10 cm. from = (10)% = (8) + AP2

the centre of the circle.

Sol. In the circle, OA is radius and AP is the_,
tangent to the circle

= 100 = 64 + AP?
= AP2 =100 - 64 = 36 = (6)
AP = 6 cm. Ans.
Q. 2. ApointPis 17 cm. away from the cenﬂ

of the circle and the length of the tang
drawn from P to the circle 1s 15 ¢
Find the radius of the circle.

Sol. In the circle, OA is the radius, AP 1s thd
tangent drawn fmm P

. ZOAP = 90“ or OA L AP
*. OA =8 cm, OP =10 cm. Now, in right AOAP,

.- OA L AP or ZOAP =90° -OP%=0A%+ AP* k.
(Pythagoras Theorem]|
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= (17)* = 0AZ + (15)?

= 289 =0A2+ 225

= OA? =289 — 225 =64 = (8)?
OA =8

Hence, radius of the circle = 8 cm. Ans.

Q.3. There are two concentric circles, each
with centre O and of raddi 10 cm and

26 cm respectively. Find the length of
the chord AB of the outer circle which
~ touches the inner circle at P.

A B

8Sol. Radius (r) of the inner circle = 10 cm.

w0

Radius (R) of the outer circle = 26 cm.

AB is the chord of the outer circle and
tangent to the inner circle at P.

Join OA and OP.

. AB is tangent and OP the radius of
the inner circle.

.. OP 1 AB and P bisects the chord AB
of the outer circle.

Now, ih right AOAP,
*= AP? + OP? (Pythagoras Theorem)

Sol.

= (26)% = AP? + (10)?
= 676 =AP2+ 100
= AP2 =676 — 100 = 576 = (24)?
AP = 24
Hence, AB = 2AP =2 x 24 =48 cm.
Ans.

. A and B are centres of circles of radii

9 cm and 2 cm such that AB = 17 ¢cm
and C is the centre of the circle of radius
r cm which touches the above circles
externally. If ZACB = 90°, write an
equation in 7 and solve it.

A, B and C are the centres of the three
circles, such that circle with centre C
touches the other two circles externally.

Radius of circle with centre A = 9 cm.
Radius of circle with centre B = 2 cm.
AB =17 cm. and ZACB = 9(0°
Let, radius of the third circle = r
AN == (Ot ="t
e BC = (2"t 7) = cm.
Now, in right AACB,
ABZ=AC?+ B(C?
= (172 =©9 + 1?2+ (2 + r)?
= 289=81+18r+r2+4+4r+ 2
= 289 =2r2+22r+ 85
= 2r* + 22r 485289 =0

= 2r2 +22r-204 =0
= P+ 11r-102=0
(Dividing by 2)

Now, 2+ 17r—6r—102 =0
= r(r+17)-6(r+17)=0
= r+17)(r—6)=0
(Zero Product Rule)
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Either r+ 17 =0, then r=- 17, but it is
not possible.

Orr—-6=0,thenr==6
Hence, radius of the third circle ()
= 6 cm. Ans.

. Two circles touch each other externally

at a point C and P is a point on the
common tangent at C. If PA and PB are
tangents to the two circles, prove that
PA = PB.

P

Given. Two circles touch each other
externally at C. Through C, a common
tangent is drawn. From a point P on it,
tangents PA and PB are drawn to their
respective circles.

To prove. PA=PB

Proof. From P, PA and PC are the
tangents drawn to the first circle

PA =PC 2 £
Similarly, from P, PB and PC are the
tangents drawn to the second circle

PB =PRC i)
From (i) and (ii),
PA =PB
Hence proved.

. Two circles touch each other internally.

Prove that the tangents drawn to the two
circles from any point on the common
tangent are equal in length.

Given. Two circles touch each other at
P internally. A common tangent is drawn
from P. From a point T on it, TA and
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Sol.

. Two circles of radii 18 cm. and 8

Ar;mdeep s Foundation Mat

TB tangents are drawn tﬂ the gwen
circles.

To prove. TA =

Proof. -~ From T , TA and TP are
tangents to the first circle.

S =Tk

Similarly, from T, TB and TP are th
tangents to the second circle. |

- “TR =1 N
From (i) and (ii), TA=TB
Hence proved.

15l

touch externally. Find the length of
direct common tangent to the tw
circles.

Two circles with centres O and C to
each other externally at P. 3

Radius of the first circle is 18 cm an
second circle is 8 cm.

AB is the dlrect common tangent. Froi
C, draw CD L AO meeting OA at D.

.. OD=0A-AD=18-8 =10 cm.
OC = OP +PC =18 + 8 = 26 cm

10



4 Sol.
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Now, in right AODC, Sol. Two circles of radii 8 cm and 3cm have
OC? = OD? + DC? O and C as their centres respectively.
| (Pythagoras Theorem) AB is their common direct tangent
= (26)* = (10)? + DC? OA=8cm, CB=3cm, AB = 10 cm.

N). 8.

= 676 =100 + DC2

= DC2 =676 — 100 = 576 = (24)?
DC = 24 cm.
AB = DC = 24 cm. Ans.

Two circles of radii 8 cm and 3 cm have
their centres 13 cm apart. Find the length
of a direct common tangent to the two.

circles. From C, draw CD 1 OA meeting OA atD
Two circles with centres O and C are ~“OD=8-3=5cmand
drawn of the radii 8 cm and 3 cm. Their, § CD=AB =10 cm.

centres are 13 cm apart.

Now, in right ADOC,
OC? = OD? + DC?
(Pythagoras Theorem)
= (5)2 + (10)>= 25 + 100 = 125

=(25.5%8
-~ 0OC =25x5=5V5
iy e i(73:230)+= 11-1'8'cm.
.. Distance between their centres
AB is their common direct tangent. Join : = Er A Al
OA andCB Q. 10. With the vertices of APQR as centres,
: three circles are described, each
Through C, draw a perpendicular CD touching the other two externally. If the
to OA meeting it at D. sides of the triangle are 7 cm., 8 cm.
Nt gt a=5cm OC=13¢H and 11 cm. find the radii of the three
. y ' circles.
v " Sol. Let PQ =7 cm., QR = 8 cm
OCE=0D +.DC* and RP = 11 cm.

(Pythagoras Theorem)
= (13)2'=(5)* + DC?

g | R Y T e ‘

= DC? =169 - 25 = 144, Y
DC = 4144 = 12 cm. Ans.

) Q.9. Two circles of radii 8 cm and 3, cm have a

direct common tangent of length 10 cm. Find
the distance between their centres, up to two Letx, y, z be the radii of the three circles,

places of decimal. then
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x+y=7,y+z=8,z+x=11
Adding, we get

26
2(x+y+z) g x+y+z=“2——13
Subtracting one by one, we get
x={(x+y+2)—(@+2)}=13-8=5
y={x+y+2)-(+tx}=13-11=2
z Sty s Gt V) = 13- 11,6

Hence, radii of the three circles will be

Sms 2cm., 6 cm. Ans. .
Q. 11. (i) AABC is aright-angled
triangle with AB = 12 cm and ;
AC = 13 cm. A circle with centre
O has been inscribed inside the
triangle. Calculate the value of x, e
the radius of the inscribed circle. B

(i) PQR is a right angled triangle with PQ
=3 cm and QR = 4 cm A circle which touches
all the sides of the triangle is inscribed in the
triangle. Calculate the radius of the circle.
Sol.AABC is a right-angled triangle, \
right angle at B, AB =12 cm

AC = 13 em. A circle with centre . 2,

O is drawn in the triangle 3 R
touching its sides at P, Q, R ¢
respectively. ;

Now, in right AABC, -

AC?= AB?+ BC? (Pythagoras Theorem)
= (13)2=(12)2 + BC? = 169 =144 + BC?
= BC? =169 -\144 = 25 = (5)°

BC =5 cm.

Now, it is clear that BPOR i1s square.
Where each side = x

. AQ and AR the tangents to the circle

L RQ=AR
Similarly, CQ and CP are the tangents
.. CQ=CP
Now, AR=AB-RB=12-x
= AL = 12 up o man(l)

Ches= BCBPSx
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Adding (i) and (if), we get
AQ+CQ=12-x+5+x

AC=17-2x=>13=17-2x=2x= 171

3 x=i=2
2

Hence, value of x = 2 cm. Ans.

e e b T P N S A e s S e b L AR e Pl S o 2 e i
o

(i) In APQR, £Q = 90°
and PQ = 3 cm, QR = 4cm
PR = ,/PQ2 +QR’ pem
= Jor +@y : ” |

= J9+16=425 =5 cm Q

A circle with centre O, is drawn which toue
the sides of the A PQR at L, M and N respectivel

Let O be the centre of the circle OL, OM

are joined
clearly QLOM is a square and let OL = OM

L3em

. QL = rand QM =
RM*(4—r)CmandPL—(3-r)c
But RM = RN and PL = PN
(Tangents from the outer points to the circl

RN =4 — r and

PNty ;
‘PR = RN+PN—4——r+3—r
=7 = 2r
But PR = S5cm |
B T, B 00y g .
2
= 2r=T==§"5wd = r=5=1

Hence radius of the incircle = 1 cm Ans.
Q. 12. In the given
figure, O is the centre
of each of two o 1
concentric circles
of radii 4 cm and 6 cm respectively. PA and PB
tangents to outer and inner circle respectively.
PA = 10 cm., find the length of PB, upto two plac
of decimal. '
Sol. Two concentric circles with centre
and radius OA and OB respectively. £
and BP are the tangents drawn from§
“in the circles. Join OA, OB and OP.
AP=10cm.,0A=6cm,OB=4c¢
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7i_ . AP is tangent and OA is radius
| .. OA LAP
8 Similarly, OB L BP
1 i Now, in right AOAP,
g g OP2 = OA2 + APZ = (6)% + (10)?
dy § - (Pythagoras Theorem)
by i =36 + 100 = 136 i)
Similarly, in right AOBP
1 OP2 = OB? + PB2 = (4)? + PB?
“ (Pythagoras Theorem)
i" = 16 + PB? ...(ii)
f | From (i) and (i), we get
N 136 = 16 + BP2
4 = PB2 =136 — 16 = 120
PB = v/120 ¢m. = 10-95 cm. Ans.
"% Q.13. In the given figure, AABC is
1 circumscribed. The circle touches the
sides AB, BC and CA at P, Q, R
i respectively.
] i
m Al 'l
Q
3
il _
it IfAP=5cm, BP=7cm, AC= 14 cm
il and BC = x cm, find the value of x.
5 Sol. AABC is circumscribed and circle
o touches its sides AB, BC, CA at P, Q
I~n"~ I and R respectively. ‘
il AP=5cm., BP=7cm,,
O | AC = 14 cm.

and BC=x

From A, AP and AR arc the tangents to
the circle

LAP=AR = AR=5cm.
L CR=14-5=9 cm.

Now, from C, CR and CQ are the tangents

CR =10
=> CQ=9 cm
From B, BQ and BP are the tangents.
caBE—HQ =B =% cm.
.. BC=BQ#€Q="7+9 =16 cm.
Hence, x = 16 cm. Ans.

Q. 14. Inthe given figure, quadrilateral ABCD

is circumscribed. The circle touches the
sides AB, BC, CD and DA atP,Q,R, S,
respectively. If AP =9 cm, BP =7 cm,
CQ = 5 cm and DR = 6 cm, find the

perimeter of quad. ABCD.
D~8cm R

w
O Scm O

7cm B

A=—gcm F

Sol. Quadrilateral ABCD is circumscribed. A

circle touches its sides AB, BC, CD and
DA at P, Q, R and S respectively.

AP=9cm, BP=7cm, CQ=5 cm and
DR =6 cm.

- From A, AP and AS are the tangents
to the circle.

I3 AP =AS =9 cm.
Similarly, BP = BQ = 7 cm.
CQ='CR=Scm.
And DR = DS =6 cm.
Now, AB=9+ 7= 16 cm.
BC=7+ 5=12cm.
CD=35%6=11cm.
and DA=6+9=15cm.
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. Perimeter of quadrilateral ABCD
=AB+BC+ D+ DA
=16+ 12+ 11 + 15 = 54 cm. Ans.

Q. 15. In the given figure, the circle touches the

Sol.

Q. 16.

sides AB, BC, CD and DA of a
quadrllateral ABCD at the pomts P, Q,
R, S respectively.

IfAB=11cm, BC=xcm, CR =4 cm
and AS = 6 cm, find the value of x.

D

..l......- 11 cm.-—-—-“""'

A circle touches the sides AB, BC, CA
and DA at P, Q, R and S respectively.

AB=11cm, BC=xcm, CR=4cmand
AS =6 cm.

* From A, AP and AS are the tangents
to the circle.

AP=AS=6cm.
.. BP=AB- AP=11-6=5cm.
Similarly, BP=PQ =5 cm.
and CQ=CR=4cm.
Noew, BC=BQ + CQ
=BP+CR=5+4=9cm.
Hence, x=9cm. Ans.

In the given figure, a circle touches the
side BC of AABC at P and AB and AC
produced at Q and R respectively. If AQ
= 15 cm. find the perimeter of AABC.

Sol.

Q. 17.

Sol.

ed from https:// www.studiestoday.com
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A circle touches the sides AB and AC.'
produced at Q and R internally and BC
at P externally. AQ =15 cm.
.~ From A, AQ and AR the tangents to
the circle o
.. AR=AQ=15cm.
Now, perimeter of AABC

=AB + AC + BP + CP
=AB+AC + BO+ CR
=AB+BQ+AC+CR=AQ+AR
=15+ 15 =30 cm. Ans.

In the given figure, PA and PB are two
tangents to the circle with centre O. If
ZAPB =40° find ZAQB and ZAMB.

p<L N0y
i the figure,
PA and PB are two tangents to the circle
with centre O. ZAPB = 4(°
Join OA and OB.
Now, ZOAP = 90°

(. OA is radius and PA tangent)
Similarly, ZOBP = 90°

But, ZOAP+ ZAPB + ZPBO + ZAOB
=360° (Sum of angles of a quadrilateral)

= 90° + 40° + 90° + ZAOB = 360°
= 220° + ZAOB = 360°
= ZAOB = 360° — 220°

ZAOB = 140°

Now, arc AMP, subtends ZAOB at the
centre and ZAQB at the remaining of the
circle

s ZAOB = 24’AQ__B

1
= ZAQB = 5 ZAOB

— ZAQB = Elax|140°= 70°
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A . AMBQ is a cyclic quadrilateral Q. 19. In the given figure, PQ is a diameter of
Ll .. ZAMB + ZAQB = 180° a circle with centre O and PT 1s a tangent
= ZAMB+ 70°=180° at P. QT meets the circle at R. If ZPOR
b = ZAMB=180°-70°=110° Ans. = 72°, find £ZPTR.
Q. 18. In the given figure, PA and PB are two -
tangents to the circle with centre O. If
ZAPB = 50°, find :
() ZAOB . (i) ZOAB (iii) £LACB
0 R
T
P
\ Sol. PQ is the diameter of the circle with
. centre O. PT is the tangent at P. QT
i - _ meets the circle at R.
i Sol. PA and PB are the tangents to the circle _/POR = 72°
1 B - $uiih, ceniie ObéAP B ragt Arc PR subtends ZPOR at the centre
; Jomn 0{5‘ andl B, _ and ZPQR at the remaining part of the
(i) ‘.. OA isradius and AP is the tangent to T
the circle :
| . ZPOR =2/PQR
e OR TTAPY Q
Similarly, OB L BP — /PQR =~ ZPOR
| Now, /APB + ZOAP + ZOBP + ZAOB = 360° 2
(Sum of angles of a quadrilateral) 1 ATSS
| = 50° + 90° + 90° + ZAOB = 360° E LR w2 = 50
; = 230°+ ZAOB = 360° Now.'in AQPT
ORI e < ZQPT + ZPTQ + £PQT = 180°
. ZAOB =130 (Sum of angles of a triangle)
wzy D 8 | = 90° + 36° + ZPTQ = 180°
OA = OB (radii of the same circle) o 126° + ZPTQ = 180°
.. ZOAB=Z0OBA : s = ZPTQ = 180° — 126°
| NESLOAR + Z0Bas 2208 = 130 -, ZPTQ = 54° or ZPTR = 54° Ans.
| (Angles of a triangle) Q. 20. (i) In the given figure, O is the centre of

(iii)

= ZOAB + ZOAB + 130° = 180°

= 2/0AB = 180“ 130°= 50"

= 25“

50
B2 \INIS = 5

Now, arc AB subtends ZAOB at the
centre and ZACB at the remaining part
of the circle.

.. ZAOB=2 ZACB

1
= LAGB = EAAOB

= E x 130°= 65° Ans.

the circumcircle of AABC. Tangents at
A and B intersect at T. If ZATB = 80°
and ZAOC = 130°, calculate ZCAB.

(ii) In the given figure, PA and PB are tangents
to a circle with centre O and AABC has been
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inscribed in the circle such that AB = AC.
I ZBAC =T72°, calculate
(a) ZAOB (b) LAPB

Sol. (i) O is the centre of the circumcircle
of AABC. At A and B, tangents AT and
BT are drawn to meet at T.

£ATB = 80° and ZAOC = 130°

. TA =TB  (Tangents from T)
- LTAB = ZTBA
But in ATAB,
£LTAB + LTBA + ZATB = 180°

(Sum of angles of a triangle)
= LTAB + ZTAB + 80° = 180°
= 2ZTAB = 180° - 80° = 100°

100°

2
- OA=0C (Radii of the same circle)
- LOAC = Z0OCA
Now in AOAC, :
s ZOAC + ZOCA + ZAOC=180°
(Angles of triangle)
= ZOAC + ZOAC + 130° = 180°

ZTAB = = 50°

7

- LABC + ZACB = 180° — 72° = 108°
But ZABC = ZACB 1
(Angles opposite to equal sides)

:. ZACB+ ZACB= 108" ,

o

a3

(a) Arc AB, subtends ZAOB at the centre and
ZACB on the remaining part of the circle
s ZAOB=2 ZACB =2 x 54°=108°
(b) .. ZAPB=180°- ZAOB =180° - 108°
Sl c B p B
Q. 21. Show that the ¢ e
tangent lines at
the end points
of a diameter of
a ‘circlesqare
parallel. :
Sol. Given. AB is ‘E A P
the diameter of the circle with centre
O. At A and B, tangents EAF and CBD
are drawn. "
To prove. CD || EF
Proof. .- OA is radius and EAF is the
tangent.
. OA L EF or ZOAE = 90° I5@)
Again, OB i1s radius and CBD is the

1
= 2 ZACB=108°= ZACB =

tangent = ZOBD = 90° ek 4 7))
From (7) and (i),
ZOAE=Z0OBD
But, these are alternate angles
S D EE Hence proved.

Q. 22. Prove that

= 2Z0AC=180°- 130°=50°

=Z0AC= 5
.~ OA is radius and AT is the tangent.

the tangents at the
extremities of any
chord make equal
angles with the
chord.

50°

= 25°

s, ZOAT =9(°
Now, ZCAB=/ZCAO + ZOAT - ZTAB
= 25° + 90° — 50° = 65° Ans.
(i7) In the given figure, PA and PB are tangents
to the circle with centre O
AABC 1s inscribed in circle such that
AB=AC
ZBAC=72° |
Now in AABC,
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Sol. AB is the chord of the circle with centre
O. BP and AP are the tangents drawn
meeting each other at P. OP is joined

intersecting AB at C.
To prove. ZPAC ="/BPC

Proof. In APAC and APBC,
PA = PB (Tangents from P)
PC =PC (Common)
LAPC = /BPC (Angles with OP)




1

i, 23.

Sol.
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APAC = APBC (S.A.S. axiom)
Hence, ZPAC = ZBPC (c.p.c.t.)
Hence proved.

Show that the line segment joining the
points of contact of two parallel tangents
passes through the centre.

Given. AB and CD are two tangents
such that AB || CD. PO and QO are
joined.

To prove. POQ is a straight line.
Construction. Draw OE || AB || CD.

Proof. '.. OP is the radius and AB is the
tangent.

/ ZOPA = 90°
Similarly, ZOQC = 90°

.+ OE || AB

-, ZOPA + ZPOE = 180°

(Angles on the same side of the
' transversal)

== POE 180°

= ZPOE =180° — 90° = 90°

Similarly, OE || CD

-+ ZQOE + £0QC = 180°

=  ZQOE + 90° = 180°

=5 ~ ZQOE = 180° — 90° = 90°
ZPOE + QOE = 90° + 90° = 180°

- POQ is a straight line

Hence proved.

. In the given figure, PQ is a transverse

common tangent to two circles with
centres A and B and ofradii 5 cm and 3
cm respectively. If PQ intersects AB at

Arundeep’s Foundation Math-X

C such that CP = 12 cm, calculate AB.

Sol. PQ is a transverse common tangent to
the two circles with centre A and B
respectively. The radii of circles are 5
cm and 3 cm. AB is joined which
intersects PQ at C and CP = 12 cm.

Join AP and BQ.

~.* AP 1s radius and PQ is tangent
ZAPQ =90°

Similarly, ZBQC =90°

Now, in APAC and AQBC,

ZAPCZBQG (each 90°)
£ZPCA=ZQCB
(Vertically opposite anlges)
“. APAC ~ AQBC (AA axiom)
ACHIC - AP
CB CQ BQ

BIEE VAR e D . S

e TR
12% 3.036
= CQ = o
Now, In right AAPC
.~ AC?=PC? + AP?
(Pythagoras Theorem)
AC? =122+ 52 =144 + 25 =169 = (13)?
AC =13 cm.
Similarly, In right ABCQ
BC?2 =CQ? + QB2
(Pythagoras Theorem)
= (72 + (3%
=51-84 + 9 = 60-84 = (7-8)°
BC=78cm.
Hence AB=AC+CB=13+7-8
| = 20-8 cm. Ans. ;

cm = 7-2 cm.
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Q. 25. AABC is an isosceles triangle in which

Sol.

Q. 26.

AB = AC, circumscribed about a circle.
Prove that the base is bisected by the
point of contact.

A

B Q C
AABC is circumscribed about a circle

with centre O. AB = AC and the circle
touches the sides AB, BC and CA at P,

Q and R respectively.
To prove. Q bisects BC.

Proof. AP and AR the tangents to the
circle

3 AP=AR

Similarly, BP=BQ and CQ =CR
; AB =AC and AP = AR
. AB-AP=AC-AR

= BP=CR
But BQ =BP and CQ = CR
BQ=CQ

Hence, Q is the mid-point of BC
Hence proved.

In the given figure, quadrilateral ABCD
is circumscribed and AD L AB. If the
radius of incircle is 10 cm, find the value
Dl

C
X

wo 8¢

Sol.

Q. 27.

Sol.

Arundeep’s Foundation Math-X

Quadrilateral ABCD is circumscribed

about a circle with centre O. AD L AB
Radius of circle = 10 cm. AB =x cm.
BC =38 cm., CR =27 cm.

'~ DR and DS are the tangents to the |
circle from D |

A DICSTpS—p
- OS LAD and OP L AB
. APOS is a square

(Say) -

S AS=0S =10 cm
- The circle touches the sides of the
quadrilateral

.. AB+CD=AD + BC

=i o 280ty it 1 )08

= x=y+10+38-27-y=121
Hence, x = 21 cm. Ans.

In the given figure, a circle is inscribed
in quad. ABCD. If BC = 38 cm,
BQ = 27.cm, DC = 25 cm and
AD 1 DC, find the radius of the circle.

In the figure, a circle with centre O is
inscribed in a.quadrilateral ABCD
DC=25cm,CB =38 cm. BQ =27 cm.
ADYSRDE.

. BQ and BR are the tangents to the
circle from B

v BR =B )

. CR=BC-BR=38-27=11cm.
Similarly, CS = CR = 11 cm.

. DS=DC-CS=25-11=14 cm.
-+ OP L AD and OS 1 DC

.. DSOP is a square

Downloaded from https:// www.studiestoday.com




) Downloaded from pipessww.studiestoday.com _ :
| 347 I Arundeep’s Foundation Math-X
-
. ,‘ ~ Sol. (i) Chords AB and CD intersect each
-_’lﬂ AP0 S s afthe dircle other at P inside the circle.
: ». Radius of the circle = 14 cm. Ans. AP x PB = CP x PD
: EXERCISE 21 (B) =L mpni v
Q. 1. Find the unknown length x in each of =, = 2 310 = 8-0
) the following figures : 35
b x = 80 cm. Ans.
D (i) .- Chords AB and CD intersect each
A other at P inside the circle
i .. AP XPB=CP x PD
=> x*%X9=81x5
14 o 8:-1x5
9
| ; F % x =45 cm. Ans.
(% (i) (ii7) '~ Chords AB and CD intersect each

other at P outside the circle
. APxPB=CP x PD
T7x(7+9)=8(8+x)
= 16— 84S + X)
= 8 (8 +x)=112.

8
x=14 -8 =6 cm. Ans.

(iv) - PAB is the secant and PT is the tangent
: to the circle

. PT>=PA x PB
= x2=45(45+13'5)
=45 x 18 = 81-0 = 81

x = V81 = 9cm. Ans.

(v) . PABis the secant and PT is the tangent
to the circle

PT? =PA x PB
= (12)2=x x (x + 10)
= 144 =x2+ 10x
5 x*+10x - 144=0
= . x¢ ot 180~ 8x— 144 =0
=>x(x+18)-8(x+18)=0
= (x+18) (x—8) =0
(Zero Product Rule)
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Either x + 18 =0, then x = — 18 which

is not possible.

or x-8=0,thenx=38
Hence, x = 8 cm. Ans.

P

Q. 2. (/) In the figure given
‘below, PT is a tangent to

A ot o B

= OS] Yo
Let, PD=x i
-.CP= (10 + x) cm.
.» Two chords AB
and CD intersect c |
~ each other at P outside the circle. |

. PAxPB=PC x PFD"

the circle. Find PT if ASE 778
AT =16 cm and AB = 12 cm. (2007)

(i1)Two chords AB and CD of a circle intersect at
a point P inside the circle such that AB = 12 cm,

AP = 2:4 ¢cm and PD = 7-2 cm. Find CD.
Sol. (i) Since PT is a tangent and TAB is the

secant. p
- PT? = TAxTB
=16 x 4 = 64

T

B8 et N T bR
[ TA=16, AB = 12,

- TB=TA-AB=16-12=4]

(ii) AB =12 cm, AP = 2-4 cm

. PB=AB-AP=12-24
= 9:6 cm.

Let, CP=x

. Chords AB and CD

intersect each other at P

A

13,9

=32cm.

inside the circle

. AP-xPB = CP x'PD
= 24 x9:6=xx72
_2:4x9:6
T )
= CP=321cm
Hence, CD=CP + PD =32 + 7-2
10-4 cm. Ans.

Q. 3. If AB and CD are two chords of a circle

which when produced meet at a point P
outside the circle such that PA =12 cm,
AB =4 cm and CD = 10 cm, find PD.

PA =12 cm, AB=4 cm
"BP=AP-AB =12-4=8cm.

= X

—_—

Sol.

= 12x8=(10+x) xx
= 96 = 10x + x*
= x2+10x-96=0
= x>+ 16x76x—96 =0
S xx+ 16056 v+ 16)=9
= (x+16)(x—6)=0
(Zero Product Rule)
‘Eitherx + 16 =0, then x =— 16 which is
not possible _
or x—6=0,thenx=6
Hence, PD = 6 cm. Ans.

Q. 4. In the given figure, two circles intersect
each other at the points A and B. If PQ
and PR are tangents to these circles from
a point P on BA produced, show that
PQ = PR.

Sol.
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en. Two circles with centre O and C intersect

“ach other at A and B. P is a point on BA produced
nd from P, PQ and PR are tangents to these circles.
o prove. PQ = PR

~'roof. .- PQ is the tangent and PAB is the secant
| f the circle with centre O

", PA x PB = PQ? (D)
“imilarly, PR is the tangent and PAB is the secant
f the circle with centre C.
1. PA x PB = PR?

«rom (i) and (ii),
1Q*=PR? = PQ=PR Hence proved.
» Q. 5. Inthe given figure, AE C

“nd BC interesect each other at
woint D. If ZCDE = 90°,

4B =5cm, BD=4 cm and
D =9 cm, find DE. (2008)

... (i)

“ioL.In the given figure, NLlh £

~“hords AE and BC intersect \é\_//

ach cther at right angles in C

e circle. AB is joined

B =5 cm, BD =4 cm,

D=9 cm o

‘1 right AADB, P

"\B?= AD?+ BD? DL
(Pythagoras theorem) A fiem E

5)2 = AD? + (4) B

225=AD*+ 16 = AD*=25-16 =9 = (3)?

B . AD=3cm

~ " Chords AE and BC intersect each other in
~ thecircleatD
q - AD x DE =BD x DC

8~ 3 xDE=4x9= DE=

~ Hence DE =12 cm
© Q. 6. (i) In the given figure, PAT is tangent at

"L If ZACB = 50°. Find": (a) ZTAB (b) ZADB.

4%x9

=12 cm

_
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(i1) In the given figure,
PAT is tangent at A.
If ZTAB = 70° and
£ZBAC=45° find ZABC.
Sol. (i) In the figure, \K
P A T
PAT is tangent to the circle at A
AABC 1i1s inscribed in the circle
and ZACB =50°
- (a) ‘. PAT is the tangent and AB is the chord
of the circle
- ZACB = ZBAT
(Angles in the alternate segment) |
- LTAB =50°
(b) ADBC is a cyclic quadrilateral
- ZADB + ZACB = 180°
= ZADB + 50°=180°
= ZADB = 180° — 50° = 130°. Ans.
(if) .- PTA s the tangent and BA is the chord
of the circle
s LACB=ZBAT=70°
(Angles in the alternate segment)
Now in AABC,
ZABC+ £ZBCA + ZBAC=180°
_ (Angles of a triangle)
= ZABC + 70° + 45° = 180°
= ZABC + 115° = 180°
= ZABC = 180°— 115° = 65° Ans.

Q. 7. In the given
figure, PAT 1s tangent at
A, to the circle with
centre O. If
ZABC = 35°,
find : (i) LTAC
(i) £LPAB.

Sol.(7) " PAT is the
tangent and AC is the
chord of the circle
s LTAC= ZABC
(Angles in the alternate segment)

=i o LABC = 357)
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(ii) ZBAC =90° (Angle in a semi-circle)
- /PAB + ZBCA + ZTAC = 180°
— /PAB + 90° + 35° = 180°
- /PAB + 125° = 180°
— /PAB = 180° — 125° = 55° Ans.

Q. 8. In the given figure, PAT is tangent at A
and BD is a diameter of the circle. If

ZABD =28° and ZBDC = 52°, find :
() 2 TAD: o) ZBAD (iii) £PAB (iv) ZCBD.
F 3
B +P
<50
\ A
o = Sl

ol. (i) PAT is the tangent and AD is the
chord of the circle

.. ZTAD = ZABD = 28°
(Angles in the alternate segment)

(ii) - BD is the diameter of the circle

-, ZBAD =90° (Angle in a semi-circle)
(iif) /PAB = ZADB

(Angles in the alternate segment)
But, ZADB =180°- (LABD + ZBAD)
(28°+90° . =180°—118° = 62°

ZPAB = 62°
(iv) In ABCD,

ZCBD +./ZBCD +' ZBDC='180°
(Angles of a triangle)

= Z/CBD + 90° + 52° = 180°

(. ZBCD = 90° Angle in a semi-circle)
= ZCBD + 142° = 180°

=5 ZCBD = 180° — 142° = 38°
ZCBD = 38° Ans.

. In the given figure, PQ and PR are two
equal chords of a circle. Show that the
tangent at P 1s parallel to QR.

= 180° -

Hence,

Q R 0
P >

Sol. Given. PQ and PR are two equal chor i
of the circle. QR is joined and SPT i
the tangent.

To prove. QR || SPT

Proof. .- PQ = PR
Arc PQ = arc PR
ZPRQ= ZPQR

(Equal arcs subtend equal angles at e
circumferenceli

(GIV 1 |
il

But ZRPT = ZPQR A

(Angles in the alternate Segmen I
o i PRQ= LREL
But these are alternate angles.
PR SPT.
Hence proved.

Q. 10. In the given figure,
PT touches a circle with
centre O at R. Diameter SQ
when produced meets PT
at P. R

If ~ SPR = x° and QRP =)°,
show that x° + 2y° = 90°. (2006)

Sol. PR is a tangent to the circle at R and RQ
is a chord.

. ZLPRQ =y2= ZRBO= HA sunsil..., :
[Angles in the alternate segments]
- /ZROQ=2 £RSQ |

[Angle at the centre is double the angle at an
point on the remaining part of the circle]

00

EA
il
I’

{
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s ZROQ =2y°
1 APOR, we have,

PRO =90° [Radius through the point of contact
is perpendicular to the tangent]

. ZOPR + ZROP = 90°
_ [Angle sum property of a A]
h.;; & x? +2)° =90° [From (ii)] Proved.

Q 11. Inaright-angled A ABC, the perpendicular
| BD on hypotenuse AC is drawn.

...(717) [From (7)]

i Prove that : (i) AC x AD = AB?
nif)AC x CD = BC2. A
“ol.Given. AABC is a

\ight-angled triangle.

D is a perpendicular | <
“nAC. | / \
%400 prove. B c
i) AC x AD = AB?
lif) AC x CD = BC?

“‘onstruction Draw a circumcircle of ABCD.

Prnnf (i) .- AB is the tangent and ADC is a
secant of the circle.

’5 -~ AB2=AC x AD

(i) A B =30 *(AC = AD)

§- AC?2 - AC x AD = AC? - AB? [Proved in (i)]

830t in right AABC,

TC2=AB2+BC? = AC?2-
AC x CD =B¢~2

Q. 12. In the given figure,

AB? = BC?

Hence proved.

is a chord of the circle

ith centre O and BT is

rangent to the circle.

[f ZOAB = 35°, find the

values of x and y.

.AB is the chord of the

circle with centre O and BT 1s the tangent. ZOAB
— 350

BT is the tangent and AB 1s the cherd of the circle

- ZABT = ZAPB (Angles 1n the alternate segment)
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bt
In AOAB, OA = OB (radii of the same circle)
ZLOAB=Z0OBA = 35°
But ZOAB + ZOBA + ZAOB = 180°
ES N EEE S SR Z AR — T8()°
= 70°+ ZAOB = 180° = ZAOB=180°-70°=110°

Now, arc AB subtends ZAOB at the centre and
ZAPB at the remaining part of the circle

AR =2'ZAPB

1055

= NP Vet — 8

Hence, x° =355° y°=155° Ans.

Q. 13. In the given figure, PAB is a secant to a
circle and PT is a tangent at T. Prove

that:

(i) APAT ~ APTB (ii) PA x PB = PT?.

Sol. Given. PAB is the secant to a circle and
PT is the tangent. AT is joined.

To prove. (i) APAT ~ APTB
(if) PA x PB = PT?
Proof. (i) In APAT and APTB,
ZLP = /P
ZPTA = ZABT or £ZPBT
(Angle in the alternate segment)

(Common)

. APAT ~ APTB. (A.A. axiom)
(ii) ' APAT ~ APTB [Proved 1n (i)]
PT PA |

PB  PT =11 2 PT=PA>PB

= PT?=PA x PB Hence proved.

Q. 14. In the figure AB = 7 cm and BC =9 cm
(i) Prove AACD ~ ADCB

(if) Find the length of CD (2009)



Downloaded from https:// www.studiestoday.com

[352]

Arundeep's Foundation Math-X

D

Sol. In AACD and ADCB
LC=Z2C
ZCAD=ZCDB

[Angle between chord and tangent is equal
to angle made by chord in alternate segment. |

. AACD ~ ADCB

(common)

AC  DC
B HEE e
—=DC2=ACxBC=16%x9=144 = DC=12cm

Q. 15. In the given figure, ABCD is a cyclic
quadrilateral in which CB =CD and TC
i1s a tangent to the circle at C, BC is
produced to E and ZDCE = 112°. If O

1s the centre of the circle, find
(it) ZBOC.

(i) ZDCT

Sol. ABCD i1s a cyclic quadrilateral CB=CD
And TC is the tangent to the circle at C.
BC is produced to E

ZDCE =112°
Join BD, OB and OC
. BCE 1s a straight line
~. ZBCD + ZDCE = 180° (Linear pair)
= ZBCD#* 112°=180" |
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e

= ZBCD =180° - 112°= ZBCD = 68"

Now, in ABCD,
BC=CD (given
.- ZBDC = ZDBC (Angles opposite to equal sides
112°
. ZBDC = ZDBC = ='56°

Arc, BC subtends ZBOC at the centre and £B l :
at the remaining part of the circle.

s ZLZBOC=2 /ZBDC =2 x 36" = 112° |
ZDCT = ZDBC (Angle in the alternate segment
= ZDCT = 56° (.- £DBC = 56°
Q. 16. In the given figure, AB is a direc
common tangent to two intersecting

circles. Their common chord wher
produced, intersects AB at P. |

Prove that P is the mid-point of AB.

)

Sol. Given. AB is the direct common tangent
to the circles which intersect each other at C and
D. DC 1s produced to meet AB at P.

To prove. P is mid-point of AB.
!

Proof. .- PA is tangent and PCD is the
secant to the first circle
. PA2=PC x PD i

Again, PB is the tangent and PCD is the
secant of the second circle.

s. PB*=PC x PD ...(ii0)
From (i) and (ii), -
PA2=PB? = PA=PB

Hence, P is the mid-point of AB, Hence proved. |
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