પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

ધોરણ - XI

પ્રતિજ્ઞાપત્ર

ભારત મારો દેશ છે.
બધાં ભારતીયો મારા ભાઈબહેન છે.
હું મારા દેશને ચાહું છું અને તેના સમૃદ્ધ અને
વૈવિધ્યપૂર્ણ વારસાનો મને ગર્વ છે.
હું સદાય તેને લાયક બનવા પ્રયત્ન કરીશ.
હું મારાં માતાપિતા, શિક્ષકો અને વડીલો પ્રત્યે
આદર રાખીશ અને દરેક જણ સાથે સભ્યતાથી વર્તીશ.
હું મારા દેશ અને દેશબાંધવોને મારી નિષ્ઠા અર્પું છું.
તેમનાં કલ્યાણ અને સમૃદ્ધિમાં જ મારું સુખ રહ્યું છે.

राष्ट्रीय शैक्षिक अनुसंधान और प्रशिक्षण परिषद् NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING

ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર-382010

© NCERT, નવી દિલ્હી તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, ગાંધીનગર આ પ્રયોગશાળા માર્ગદર્શિકાના સર્વ હક NCERT તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળને હસ્તક છે. આ પ્રયોગશાળા માર્ગદર્શિકાનો કોઈ પણ ભાગ કોઈ પણ રૂપમાં NCERT અને ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળની લેખિત પરવાનગી વગર પ્રકાશિત કરી શકાશે નહિ.

અનુવાદ

ડૉ. આઈ. એમ. ભટ્ટ

ડૉ. મયૂર સી. શાહ

સમીક્ષા

શ્રી સી. આઈ. પટેલ શ્રી મુકેશ બી. પટેલ શ્રી મિતેષ પંચોલી શ્રી નરેશ પી. બોહરા શ્રી રાજેશ આઈ. પટેલ શ્રી ડી. પી. પટેલ

ભાષાશુદ્ધિ

ડૉ. મનીષ કે. પંચાલ

સંયોજન

ડૉ. ચિરાગ એચ. પટેલ

(विषय-संयोष्ठ : भौति धविज्ञान)

નિર્માણ-આયોજન

શ્રી આશિષ એચ. બોરીસાગર (નાયબ નિયામક : શૈક્ષણિક)

મુદ્રણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા (નાયબ નિયામક : ઉત્પાદન)

પ્રસ્તાવના

રાષ્ટ્રીય સ્તરે સમાન અભ્યાસક્રમ રાખવાની સરકારશ્રીની નીતિના અનુસંધાને ગુજરાત સરકાર તથા ગુજરાત માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ દ્વારા તા. 25/10/2017ના ઠરાવ ક્રમાંક મશબ/1217/1036/છ-થી શાળા ક્રક્ષાએ NCERT ના પાઠ્યપુસ્તકોનો સીધો જ અમલ કરવાનો નિર્ણય કરવામાં આવ્યો. તેને અનુલક્ષીને NCERT, નવી દિલ્હી દ્વારા પ્રકાશિત ધોરણ XI રસાયણવિજ્ઞાન પ્રયોગશાળા માર્ગદર્શિકાનો ગુજરાતીમાં અનુવાદ કરીને વિદ્યાર્થીઓ સમક્ષ મૂકતાં ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ આનંદ અનુભવે છે.

આ પ્રયોગશાળા માર્ગદર્શિકાનો અનુવાદ તથા તેની સમીક્ષા નિષ્ણાત પ્રાધ્યાપકો અને શિક્ષકો પાસે કરાવવામાં આવ્યા છે અને સમીક્ષકોનાં સૂચનો અનુસાર હસ્તપ્રતમાં યોગ્ય સુધારા-વધારા કર્યા પછી આ પ્રયોગશાળા માર્ગદર્શિકા પ્રસિદ્ધ કરતાં પહેલા આ પ્રયોગશાળા માર્ગદર્શિકાની મંજૂરી માટે એક સ્ટેટ લેવલની કમિટીની રચના કરવામાં આવી. આ કમિટીની સાથે NCERTના પ્રતિનિધી તરીકે RIE, ભોપાલથી ઉપસ્થિત રહેલા નિષ્ણાતોની એક ત્રિદિવસીય કાર્યશિબીરનું આયોજન કરવામાં આવ્યું અને પ્રયોગશાળા માર્ગદર્શિકાને અંતિમ સ્વરૂપ આપવામાં આવ્યું. જેમાં ડૉ. એસ. કે. મકવાણા (RIE, ભોપાલ), ડૉ. કલ્પના મસ્કી (RIE, ભોપાલ), ડૉ. આઈ. એમ. ભટ્ટ, પ્રો. (ડૉ.) જાબાલી જે. વોરા, શ્રી સી. આઈ. પટેલ અને શ્રી શેખર બી. ગોરે ઉપસ્થિત રહી પોતાના કીમતી સૂચનો અને માર્ગદર્શન પૂરા પાડ્યા છે.

પ્રસ્તુત પ્રયોગશાળા માર્ગદર્શિકાને રસપ્રદ, ઉપયોગી અને ક્ષતિરહિત બનાવવા માટે માન.અગ્રસચિવશ્રી(શિક્ષણ) દ્વારા અંગત રસ લઇને જરૂરી માર્ગદર્શન આપવામાં આવ્યું છે. મંડળ દ્વારા પૂરતી કાળજી લેવામાં આવી છે, તેમ છતાં શિક્ષણમાં રસ ધરાવનાર વ્યક્તિઓ પાસેથી ગુણવત્તા વધારે તેવાં સૂચનો આવકાર્ય છે.

NCERT, નવી દિલ્હી ના સહકાર બદલ તેમના આભારી છીએ.

ડૉ. એમ. આઇ. જોષી

નિયામક તા. ડૉ. નીતિન પેથાણી

કાર્યવાહક પ્રમુખ ગાંધીનગર

પ્રથમ આવૃત્તિ : 2018

પ્રકાશક : ગુજરાત રાજ્ય શાળા પાઠ્ચપુસ્તક મંડળ, 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર વતી

ડૉ. એમ. આઇ. જોષી, નિયામક

મુદ્રક

FOREWORD

The National Council of Educational Research and Training (NCERT) is the apex body concerning all aspects of refinement of School Education. It has recently developed textual material in Chemistry for Higher Secondary stage which is based on the National Curriculum Framework (NCF)-2005. NCF recommends that children's experience in school education must be linked to the life outside school so that learning experience is joyful and fills the gap between the experience at home and in community. It recommends to diffuse the sharp boundaries between different subjects and discourages rote learning. The recent development of syllabi and textual material is an attempt to implement this basic idea. The present laboratory manual will be complementary to the textbook of Chemistry for Class XI. It is in continuation to the NCERT's efforts to improve upon comprehension of concepts and practical skills among students. The purpose of this manual is not only to convey the approach and philosophy of the practical course to students and teachers but to provide them appropriate guidance for carrying out experiments in the laboratory. The manual is supposed to encourage children to reflect on their own learning and to pursue further activities and questions. Of course the success of this effort also depends on the initiatives to be taken by the principals and teachers to encourage children to carry out experiments in the laboratory and develop their thinking and nurture creativity.

The methods adopted for performing the practicals and their evaluation will determine how effective this practical book will prove to make the children's life at school a happy experience, rather than a source of stress and boredom. The practical book attempts to provide space to opportunities for contemplation and wondering, discussion in small groups, and activities requiring hands-on experience. It is hoped that the material provided in this manual will help students in carrying out laboratory work effectively and will encourage teachers to introduce some open-ended experiments at the school level.

Jærle Tel

PROFESSOR YASH PAL

Chairperson
National Steering Committee
National Council of Educational
Research and Training

New Delhi 21 May 2008

PREFACE

The development of the present laboratory manual is in continuation to the NCERT's efforts to improve upon comprehension of concepts and practical skills among the students. The present laboratory manual will be complementary to the textbook of Chemistry for Class XI.

The expansion of scientific knowledge and consequently the change in the system of education has led to the development of new methods of instructions. Today the stress is laid on the enquiry approach and discussion method instead of lecture method of teaching. Unfortunately, it is believed that study of chemistry means abstract thinking, writing long formulas and complex structures and handling complicated equipments. The reason behind such endeavour is that even well-endowed schools tend to give only the cosmetic importance to the laboratory work. Children's natural spirit of inquiry is often not nurtured.

The new syllabus of practical work in chemistry has been designed to cater to the needs of pupil who are desirous of pursuing science further. The fundamental objective of this course is to develop scientific attitude and desired laboratory skills required at this level. The practical syllabus includes content based experiments, which help in comprehension of the concepts.

The project work is expected to provide thrill in learning chemistry. It is expected to serve the real purpose of practical work, which means inculcating the ability to design an experiment, to make observations methodically and to draw conclusions out of experimental data .The real purpose of practical work should be to enable the students to represent the outcome of experiments logically to conclusion, with genuine appreciation of it's limitation.

For each practical work, brief theory, material required, procedure, precautions and the questions for discussion are given in the book. The questions are aimed at testing learner's understanding of the related problems. However, teacher may provide help in case the problem is found to be beyond the capability of the learner. Precautions must be well understood by the learners before proceeding with the experiments and projects.

In order to provide some basic idea about the investigatory projects, a brief description of some investigatory projects is given in the book. However, this list is only suggested and not exhaustive. The students may select projects from subject area of chemistry, interdisciplinary areas or from the environment. While selecting a project, care should be taken to see that the facilities for carrying it out are available.

Appendices related to the chemical data and logarithmic tables are attached at the end of the book. International symbols for hazards and hazard warnings are given at several places in the book. It is expected that this will make the learners more careful about the environment and make them careful while dealing with the chemicals. Some non evaluative learning material has been given in the boxes to provide interesting information related to the practical work.

It is a pleasure to express my thanks to all those who have been associated at various stages of development of this laboratory manual. It is hoped that this practical book will improve teaching learning process in chemistry to a great extent. The learners will be able to understand the subject well and will be able to apply the acquired knowledge in new situations. I acknowledge with thanks the dedicated efforts and valuable contribution of Dr Alka Mehrotra, coordinator of this programme and other team members who contributed and finalised the manuscript. I especially thank Professor Krishna Kumar, *Director*, and Professor G. Ravindra, *Joint Director*, NCERT for their administrative support and keen interest in the development of this laboratory manual. I am also grateful to the participating teachers and subject experts who participated in the review workshop and provided their comments and suggestions which helped in the refinement of this manual and make it learner friendly. We warmly welcome comments and suggestions from our readers for further improvement of this manual.

HUKUM SINGH
Professor and Head
Department of Education in
Science and Mathematics

LABORATORY MANUAL DEVELOPMENT TEAM

Members

Anjni Koul, *Senior Lecturer*, DESM, NCERT, New Delhi Brahm Parkash, *Professor*, DESM, NCERT, New Delhi I. P. Aggarwal, *Professor*, Regional Institute of Education, NCERT, Bhopal R. S. Sindhu, *Professor*, DESM, NCERT, New Delhi Ruchi Verma, *Lecturer*, DESM, NCERT, New Delhi

MEMBER-COORDINATOR

Alka Mehrotra, Reader, DESM, NCERT, New Delhi

ACKNOWLEDGEMENTS

The National Council of Educational Research and Training (NCERT) acknowledges the valuable contributions of the individuals and the organisations involved in the development of Manual for Chemistry Practicals for Class XI. The following academics contributed very effectively for the review of the manuscript of this manual: D. S. Rawat, *Reader*, Department of Chemistry, University of Delhi; Haritima Chopra, *Reader*, Maitreyi College, New Delhi; K. G. Trikha, *Reader (Retired)*, A.R.S.D. College, New Delhi; M. S. Frank, *Vice Principal*, St. Stephen's College, Delhi; Samta Goel, *Reader*, Zakir Hussain College, New Delhi; S. G. Warkar, *Lecturer*, Delhi College of Engenering, Delhi; Sunita Bhagat, *Reader*, A.R.S.D. College, New Delhi; K. K. Singh, *PGT*, Kendriya Vidyalaya, Pushp Vihar, New Delhi; Mona Rastogi, *Senior Headmistress*, ITL Public School, Dwarka, New Delhi; Nivedita Bose, *PGT*, Bluebells School, New Delhi; Nishi Saraswat, *PGT*, Kendriya Vidyalaya No.1, Delhi Cantt. We are thankful to them. We also acknowledge the contribution of Sunita Kumari, *JPF*. Special thanks are due to Hukum Singh, *Professor and Head*, DESM, NCERT for his administrative support.

The Council also acknowledges the support provided by the administrative staff of DESM; Deepak Kapoor, *Incharge*, Computer Station; Ishwar Singh, *DTP Operator* for refining and drawing some of the illustrations; Ritu Jha, *DTP Operator*; K. T. Chitralekha, *Copy Editor*. The efforts of the Publication Department are also highly appreciated.

અનુક્રમ	ણિકા

Foreword	d	iii		
Preface		iv		
એકમ - 1 :	1			
	• રસાયણવિજ્ઞાન પ્રયોગશાળામાં : કરશો અને ના કરશે	2		
	• વૈશ્લેષિક પદ્ધતિઓ	5		
	• પ્રયોગશાળાના પાયાના સાધનો અને પદ્ધતિઓ	5		
	• પ્રક્રિયક બોટલની સંભાળ	10		
	• ગરમ કરવાના સાધનો	11		
એકમ - 2 :	16			
	16			
	• કાચની નળીને વાળવી	18		
	• પ્રધાર (જેટ - Jet) નું બનાવવું			
	20			
	• દ્રાવણને કસનળીમાં ગરમ કરવું	22		
	• બીકર અથવા ફ્લાસ્કમાં દ્રાવણને ગરમ કરવું	22		
	• ગાળણ	22		
	• પ્રવાહીઓના કદ માપવા	25		
	• વજન કરવાની પદ્ધતિ	30		
	• પ્રયોગ 2.1 : ઑકઝેલિક ઍસિડનું પ્રમાણિત દ્રાવણ બન	નાવવું 34		
એકમ - 3 :	શુધ્ધીકરણ અને શુધ્ધતાના અભિલક્ષણો	38		
	• પ્રયોગ 3.1 : નીચેનામાંથી ગમે તે એક સંયોજનના ન	ામૂનાનું સ્ફટિકીકરણ		
	વડે શુધ્ધીકરણઃ	38		
	• પ્રયોગ 3.2 : ઘન કાર્બનિક સંયોજનનું ગલનબિંદુ નક	કી કરવું 40		
	• પ્રયોગ 3.3 : પ્રવાહી કાર્બનિક સંયોજનનું ઉત્કલનબિં	દુ નકી કરવું 43		
એકમ - 4 :	રાસાયણિક સંતુલન (દ્રાવણમાં આયનીય સંતુલન)	46		
	• પ્રયોગ 4.1 : ફેરિક આયન અને થાયોસાયનેટ આયન	તની પ્રક્રિયામાં સંતુલનના		
	સ્થાનાંતરનો અભ્યાસ કરવો.	47		

	•	પ્રયોગ 4.2 :	$[\mathrm{Co}(\mathrm{H_2O})_6]^{2+}$ અને CI^- આયનો વચ્ચેની પ્રક્રિયાના	
			સંતુલનનો અભ્યાસ	50
એકમ - 5 :	рН	અને જલીય દ્રા	વણોમાં pH ફેરફાર	53
	•	પ્રયોગ 5.1 :	કેટલાક ફળના રસ (જ્યુસ)ની pH નક્કી કરવી.	54
	•	પ્રયોગ 5.2 :	મંદન કરતાં ઍસિડ / બેઈઝના pH માં થતા ફેરફારનું અવલોકન	56
	•	પ્રયોગ 5.3 :	નિર્બળ ઍસિડ અને નિર્બળ બેઈઝની pH પર સમાન આયનની	
			અસરને કારણે થતાં ફેરફારનો અભ્યાસ કરવો.	58
	•	પ્રયોગ 5.4 :	સાર્વત્રિક સૂચકનો ઉપયોગ કરીને પ્રબળ ઍસિડના પ્રબળ બેઈઝ	
			સાથેના અનુમાપન દરમિયાન થતા pH ફેરફારનો અભ્યાસ કરવો.	61
	•	પ્રયોગ 5.5 :	સોડિયમ કલોરાઈડ, ફેરિક ક્લોરાઈડ અને સોડિયમ કાર્બોનેટના	
			દ્રાવણોની pH નો અભ્યાસ કરવો.	63
એકમ - 6 :	: અનુ	માપનીય પૃથક	કરણ (કદમાપક પૃથક્કરણ)	65
	•	અંતિમબિંદુની	પરખ	65
	•	અનુમાપનીય	પૃથક્કરણમાં પ્રક્રિયા માટે જરૂરિયાતો	66
	•	ઍસિડીમિતિ અને આલ્કલીમિતિઍસિડ-બેઈઝ અનુમાપનમાં સૂચક		66
	•			67
	•	પ્રયોગ 6.1 :	સોડિયમ હાઇડ્રૉક્સાઈડ દ્રાવણની સાંદ્રતા (પ્રબળતા) ઑકઝેલિક	
			ઍસિડના પ્રમાણિત દ્રાવણ સાથેના અનુમાપનથી નક્કી કરવી	69
	•	પ્રયોગ 6.2 :	સોડિયમ કાર્બોનેટનું પ્રમાણિત દ્રાવણ બનાવવું	74
	•	પ્રયોગ 6.3 :	મંદ હાઇડ્રૉક્લોરિક ઍસિડ દ્રાવણની પ્રબળતા (સાંદ્રતા) સોડિયમ	
			કાર્બોનેટના પ્રમાણિત દ્રાવણ સાથેના અનુમાપન દ્વારા નક્કી કરવી	75
એકમ - 7 :	ા પધ્ધ	તિસર ગુણાત્મ	ક પૃથક્કરણ	7 9
	•	પ્રયોગ 7.1 :	આપેલા ક્ષારમાં રહેલા એક ધનાયન અને એક ઋણાયનની	
			પરખ કરવી	80
	•	ઋશાયનનું પ	ધ્ધતિસર પૃથક્કરણ	81
	•	મંદ સલ્ફયુરિક	ક ઍસિડ સાથેની પ્રાથમિક કસોટી	81
	•	મંદ સલ્ક્યુરિક	ક ઍસિડ સાથેની ઋશાયનોની નિર્શાયક કસોટી	82
	•	સાંદ્ર સલ્ ફ યરિ	ક ઍસિડ સાથેની પ્રાથમિક કસોટી	86

• સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથે ઋણાયનોની નિર્ણાયક કસોટીઓ	87
• સલ્ફેટ અને ફોસ્ફેટની કસોટીઓ	92
• ધનાયનોનું પધ્ધતિસર પૃથક્કરણ	93
• ધનાયનોની પરખ માટેનું ક્ષારનું પ્રાથમિક પરીક્ષણ	93
• ધનાયનોની પરખ માટેની ભીની કસોટીઓ	99
• શૂન્ય સમૂહ ધનાયનોનું પૃથક્કરણ	99
• સમૂહ - I ના ધનાયનોનું પૃથક્કરણ	101
• સમૂહ - II ના ધનાયનોનું પૃથક્કરણ	102
• સમૂહ – III ના ધનાયનોનું પૃથક્કરણ	105
• સમૂહ - IV ના ધનાયનોનું પૃથક્કરણ	106
• સમૂહ – V ના ધનાયનોનું પૃથક્કરણ	109
• સમૂહ - VI ના ધનાયનોનું પૃથક્કરણ	111
• ક્ષારના પૃથક્કરણ માટે નમૂનાની નોંધ	114
પરિયોજનાઓ	116
પરિશિષ્ટ	129

એકમ-1 પ્રસ્તાવના (Introduction)

પ્રયોગશાળા કાર્યના આધારે વૈજ્ઞાનિક સિદ્ધાંતો વિકસાવવા અને વૃદ્ધિ કરવા માટેના વિજ્ઞાનના અભ્યાસમાં પ્રયોગશાળાના કાર્યનું વિશિષ્ટ મહત્ત્વ છે. રસાયણવિજ્ઞાન પ્રાયોગિક વિજ્ઞાન છે. અભ્યાસ વર્ગમાં શીખેલી સંકલ્પનાઓ પ્રાયોગિક કાર્ય દ્વારા વધુ સારી રીતે સમજી શકાય છે. પ્રયોગશાળાનું કાર્ય નિયંત્રિત પ્રયોગશાળાની પરિસ્થિતિમાં ઘણી બધી રાસાયણિક ઘટનાઓનુ અવલોકન કરવાની તક પૂરી પાડે છે અને તપાસની પદ્ધતિ મારફ્તે કોઈપણ કોયડો ઉકેલી શકીએ છીએ. બીજા શબ્દોમાં કહીએ તો આ તમને એક ઉત્કટ (keen) અવલોકનકાર બનવાની તથા અનુમાનો તારવવાની તેમજ પરિણામો સમજાવવાની વિપુલ તકો પૂરી પાડે છે.

પ્રયોગશાળા કાર્યમાં મળતી તાલીમ સાધનો અને સામગ્રી વાપરવા અંગેના ચાતુર્યના વિકાસમાં તથા પ્રયોગો કરવામાં મદદ કરે છે. આ પ્રમાણે, પ્રાયોગિક કાર્ય વૈજ્ઞાનિક મિજાજને પ્રોત્સાહિત કરવા તથા એક સહકારની ભાવના અપનાવવામાં મદદ કરે છે. પ્રયોગશાળામાં કરાતું કાર્ય આપણને નવા અને સર્જનાત્મક વિચારો તથા તેને મજબૂત આકાર આપવા માટેનું સ્થાન આપે છે.

વૈજ્ઞાનિક પદ્ધતિઓ અને પ્રાયોગિક કાર્ય માટેની આવડત અને પ્રયોગશાળામાં કાર્ય શરૂ કરતાં પહેલાં તમારે રાસાયણિક પ્રયોગશાળા સાથે સારી રીતે માહિતગાર બનવું જોઈએ. તમને પ્રયોગશાળામાં અને તમારા કાર્ય કરવાના ટેબલ પર આપવામાં આવતી સગવડોને તમારે ધ્યાનમાં લેવી જોઈએ.

તમે નોંધી શકશો કે તમારું ટેબલ પાણીનો નળ, ગેસની ટેપ (ચકલી), બુન્સેન બર્નર, સ્પિરિટ લેમ્પ / કેરોસીન લેમ્પ, પ્રક્રિયકની છાજલી અને નકામા પદાર્થોના નિકાલ માટે કચરાપેટી જેવી સવલતો ધરાવે છે. તમને કેટલાક પ્રક્રિયકો ટેબલ પર જડેલી છાજલી પર રાખેલા જોવા મળશે, જયારે કેટલાક પ્રક્રિયકો દીવાલો પર લગાડેલી છાજલીઓ પર રાખેલા જોવા મળશે. તમારા ટેબલ પરની છાજલીઓ પર રાખેલા પ્રક્રિયકોની તમારે વારંવાર જરૂર પડે છે. જયારે બાજુની છાજલી પરના પ્રક્રિયકો પ્રમાણમાં ઓછી વખત વપરાય છે. ટેબલ પરની સગવડો ઉપરાંત તમે જોશો કે બારણા અને બારીઓની સામેની દીવાલ પરના ઉપરના ભાગમાં લગભગ ઉપરની છતની સપાટી પાસે નિષ્કાસ પંખા (exhaust fan) લગાડેલા હોય છે. આ સગવડ નુકસાનકારક ધૂમાડાઓને બહાર ધકેલે છે અને પ્રયોગશાળામાં તાજી હવાનું પરિવહન (આવ-જા) કરે છે. આ હેતુ માટે પ્રયોગશાળામાં પૂરતી સંખ્યામાં બારીઓ હોય છે. તમે કાર્ય કરો ત્યારે બારીઓ ખુલ્લી રાખો. ધૂમાડા માટેનુ કબાટ (fume cupboard) પ્રયોગશાળામાં રાખવામાં આવે છે જેથી જે પ્રયોગોમાં ધૂમાડા નીકળતાં હોય, તેને તમે સારી રીતે કરી શકો.

એ ખાસ સલાહ આપવામાં આવે છે કે તમારે તમારી રસાયણવિજ્ઞાનની પ્રયોગશાળા, પ્રયોગશાળા પદ્ધતિઓ અને પ્રવૃત્તિઓ વિશે અને વધારે અગત્યનું એ છે કે પ્રયોગશાળામાં કાર્ય કરો ત્યારે રાખવાની સાવચેતીઓ વિશે સંપૂર્ણ માહિતગાર હોવું.

રસાયણવિજ્ઞાન પ્રયોગશાળાનું વાતાવરણ કંઈક અંશે વિશિષ્ટ છે. તે એ અર્થમાં કે

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

તે આનંદથી, શોધખોળનું અને શીખવાનું સ્થળ છે. તે અણગમો અને ભયનું સ્થાન પણ બની શકે છે. અણગમો – તમે તૈયાર થયા વગર આવો અને અગત્યની માહિતી યોગ્ય રીતે નોંધવાનું અવગણો ત્યારે અને ભય – જો તમે પ્રયોગ કરવામાં સાવચેતીઓને યોગ્ય રીતે અનુસરો નહિ; કારણ કે તેમાં કેટલાક સંભવિત ભય રહેલા હોય છે.

પ્રયોગશાળા કાર્યમાં રહેલા પાયાના સિદ્ધાંતોમાં નિપુણ થવા માટે તમારે સાધનોના ઉપયોગ વિશે જાણવું અને તમારી જાતને સલામત પદ્ધતિઓ અને સારી પ્રયોગશાળા પદ્ધતિઓ વિશે માહિતગાર થવું જોઈએ.

પ્રયોગશાળામાં કાર્ય માટે દાખલ થાવ તે પહેલાં તમારે તમારી જાતને વ્યવસ્થિત રૂપ આપવું અને પ્રયોગશાળાની તૈયારીઓ અને પ્રાયોગિક પદ્ધતિઓ વિશે જાણકાર રહેવું જેથી તમારું કાર્ય છિન્નભિન્ન ન હોય. જો પ્રયોગમાં ટીમવર્કની જરૂર હોય તો સાથે, નહિ તો વ્યક્તિગત રીતે કાર્ય કરવું. કાર્ય કરતા સમયે તમારા કૌશલ્ય અને સામાન્ય સમજનો ઉપયોગ કરો. વૈજ્ઞાનિક અભિગમ પ્રાપ્ત કરવા માટે આવું વર્તન પાયાની જરૂરિયાત છે. પ્રયોગશાળા નોંધપોથીમાં પ્રયોગોના રિપોર્ટ તૈયાર કરો. આ હેતુ માટે છૂટા કાગળો અથવા નકામા કાગળો વાપરશો નહિ. વિચારો અને પ્રયોગ પદ્ધતિ જેના પર આધારિત છે તેના સિદ્ધાંતોની સમજણ આપે તેવા અગત્યના પ્રશ્નોના ઉત્તર માટે પ્રયત્ન કરો.

વૈજ્ઞાનિકો ચર્ચાથી ઘણું શીખે છે. આ જ રીતે તમે પણ તમારા શિક્ષક અને સહાધ્યાયીઓ સાથે ચર્ચા કરીને લાભ મેળવી શકો છો. શંકા પડે ત્યારે પુસ્તકોનો ઉપયોગ કરો કારણ કે પુસ્તકો સહાધ્યાયીઓ કરતાં વધુ વિશ્વસનીય, સંપૂર્ણ અને માહિતીનો વધારે સ્રોત છે, નહિ તો તમારા શિક્ષકના સલાહસૂચન મેળવો.

સલામતીના (સાવચેતી) નિયમોનું નિરૂપણ કરવામાં આવે છે, જેથી પ્રયોગશાળામાં કરેલું કાર્ય તમારે માટે અને તમારા સહાધ્યાયી વિદ્યાર્થીઓ માટે ચોક્કસ સલામત રહે. સલામતી નિયમોનું અનુસરણ કરો અને કેટલીક વસ્તુઓ જેમ કે પ્રાથમિક સારવાર પેટી, અિનશામક વગેરે ક્યાં રાખવામાં આવેલ છે તેના વિશે જાણકાર થાઓ.

પ્રયોગશાળામાં કોઈપણ વસ્તુ ચાખશો નહિ (ઝેરી પદાર્થો હંમેશા પ્રયોગશાળામાં સારી રીતે લેબલ કરેલા હોતા નથી) અને પ્રયોગશાળાને જમવાનું સ્થળ ન બનાવશો. પ્રયોગશાળાનું કોઈપણ કાચનું વાસણ ખાવાના કે પીવાના સાધન તરીકે વાપરશો નહિ. પ્રયોગશાળામાં એકલા કામ કરશો નહિ. જો જરૂર હોય અને વધુ સમય પ્રયોગશાળામાં કામ કરવાનું હોય તો તમારા શિક્ષકની રજા મેળવશો.

1.1 રસાયણવિજ્ઞાન પ્રયોગશાળામાં : કરશો અને ના કરશો. (Do's and Don'ts in a Chemistry Laboratary)

નીચે દર્શાવેલી પદ્ધતિઓ તમને કાર્યક્ષમ પ્રયોગશાળા પ્રવિધિઓ વિકસાવવા માટે અને તમારી પ્રયોગશાળાને કાર્ય કરવા માટેનું એક આનંદદાયક સ્થળ બનાવવા માટે નિર્દેશિત કરેલ છે. તમારે નીચેની યાદીમાં દર્શાવેલી પદ્ધતિઓ (વ્યવહારો) અનુસરવા જોઈએ.

- પ્રયોગશાળામાં કાર્ય કરતી વખતે સલામતી ચશ્મા, પ્રયોગશાળાનો કોટ (એપ્રન-Apron) તથા બૂટ પહેરવા.
- પ્રક્રિયક બોટલમાં (શીશી) રહેલા પદાર્થના ઉપયોગ કરતા પહેલાં તેના પરનું લેબલ વાંચો અને ચેક કરો.
- પદ્ધતિઓ અને સાવચેતીઓ (તકેદારી) ને ધ્યાનથી વાંચો અને તેને અનુસરો.
- પ્રક્રિયક બોટલનો ઉપયોગ કર્યા પછી તેને ટેબલ પર રહેવા દેવી તે ખરાબ ટેવ છે. બોટલ પરના બૂચ બરાબર બંધ કરો અને તેમનો ઉપયોગ કર્યા પછી તરત જ છાજલી પર મૂકી દો.

પ્રસ્તાવના

- જો તમારી જગ્યા પર પ્રક્રિયક બોટલ ખાલી હોય તો પ્રયોગશાળા મદદનીશને કહો કે તે ભરી આપે.
- જો તમારે બાજુની છાજલી પરના પ્રક્રિયકની જરૂર પડે તો કસનળી અથવા બીકર લઈને તે જગ્યાએ જાવ. પ્રક્રિયક બોટલ તમારી જગ્યા પર લાવશો નહિ.
- જો તમને સલાહ આપવામાં આવી હોય તો જ, નહિ **તો વધુ પ્રમાણમાં** પ્રક્રિયકનો ઉપયોગ કરવાનું ટાળો.
- ન વપરાયેલ રસાયણ, તે રસાયણનો જથ્થો ધરાવતી બોટલમાં પાછો નાંખશો નહિ. જો તમે વધેલા પ્રક્રિયકને ફરીથી સંગ્રહ બોટલમાં મૂકવામાં ભૂલ કરશો, તો બીજા વિદ્યાર્થીના પ્રયોગ બગડશે.
- જો પ્રયોગમાં જરૂરી હોય તો જ, નહિ તો રસાયણોનું કદી પણ મિશ્રણ કરશો નહિ. આ નિયમને અનુસરવામાં નિષ્ફળતા (ભૂલ) ગંભીર અકસ્માતમાં પરિણમી શકે છે.
- સંગ્રહ દ્રાવણ (stock solution) અથવા પ્રક્રિયક બોટલમાંથી પ્રક્રિયક લેવા માટે યોગ્ય રીતે સાફ કરેલા ડ્રોપર, ચમચા અથવા પિપેટ વગેરે વાપરશો.
- બોટલના બૂચને (ઢાંકણ) ટેબલ પર રાખશો નહિ. અશુદ્ધિઓ તેને ચોંટી જાય અને બોટલનું દ્રાવણ અશુદ્ધિવાળું બને. જ્યારે તમારે પ્રક્રિયક બોટલમાંથી દ્રાવણની જરૂર પડે ત્યારે બોટલને એક હાથમાં લેશો અને બૂચને બીજા હાથ વડે ખોલશો અથવા બંધ કરશો તથા તેને સાફ કરેલા ગ્લેઝ ટાઈલ પર મૂકશો. શુષ્ક ઘન પ્રક્રિયક લેવા માટે ચમચાનો ઉપયોગ કરશો અને તેને વોચ ગ્લાસ પર રાખશો. કદી પણ ગાળણપત્રનો ઉપયોગ કરશો નહિ. પ્રક્રિયકને તમારી હથેળીમાં રાખશો નહિ અથવા આંગળી વડે અડકશો નહિ.
- વપરાયેલી દીવાસળી, લિટમસ પત્ર, તૂટેલા કાચના સાધનો, ગાળણપત્રો અથવા અદ્રાવ્ય ઘન પદાર્થો વગેરેને સિન્ક (બેઝિન)માં અથવા જમીન પર નાંખશો નહિ. તેમને તમારી જગ્યા પર આપેલી કચરા ટોપલીમાં નાંખશો. માત્ર નકામા પ્રવાહીને જ સિન્કમાં નાંખશો અને પાણીનો નળ ચાલુ રાખશો. જેથી કાંઈ ગંધાય નહિ અથવા ચોંટી જાય નહિ અને નકામું પ્રવાહી સંપૂર્ણપણે વહી જાય.
- પાણી અથવા ગેસનો બગાડ કરશો નિહ. પાણીના નળ ઉપયોગમાં ન હોય ત્યારે બંધ રાખશો. જો કોઈ વસ્તુ ગરમ કરતાં ન હો, તો તારજાળી નીચેનું બર્નર ચાલુ (સળગતું) રાખશો નિહ. તેને બૂઝાવી દો (બંધ કરી દો)
- ગરમ સાધનો સીધેસીધા જ કાર્ય કરવાની જગ્યા પર મૂકશો નહિ. કારણ કે તે કાર્ય કરવાના ટેબલને બગાડશે. તેને ગ્લેઝ ટાઈલ અથવા તારજાળી પર મૂકશો.
- જાડા કાચના બનેલા સાધનોને ગરમ કરશો નહિ. ઉદાહરણ તરીકે અંકિત નળાકાર, બોટલ, માપક ફ્લાસ્ક વગેરે, કારણ કે તેઓને ગરમ કરતા તૂટી જાય છે. ગરમ કરવાથી કાચ બેડોળ બનશે અને માપનના સાધનોનું માપાંકન (calibration) ખોટુ થઇ શકે છે. કસનળીમાં ભરેલા પ્રવાહીની સપાટીથી ઉપરના ભાગે ગરમ કરતાં તે તૂટી જશે. ક્રુસિબલને રકત તપ્ત તાપે ગરમ કરી શકાય છે.

નોંધ: રસાયશોની બોટલોના લેબલ પર આ સંજ્ઞાઓ જૂઓ.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

- દ્રાવણ ધરાવતી કસનળીને ગરમ કરો ત્યારે ધ્યાન રાખશો કે તેનું મુખ (ખુલ્લો ભાગ) તમારી કે તમારા પડોશી તરફ નથી કારણ કે કસનળીમાં રહેલું દ્રાવણ ઉછળે તો તમને કે તમારા પડોશીને નુકસાન પહોંચાડી શકે છે (આકૃતિ 1.1). કસનળીને એક જ સ્થિતિમાં સતત ગરમ કરશો નહિ. ગરમ કરો તે દરમિયાન તેને ફરતી રાખો અને હલાવતા રહો. જેથી ગરમી એકસરખી પ્રસરે.
- કાર્ય પૂરું થાય કે તરત જ બધા સાધનોને સ્વચ્છ કરશો અને તેમને યોગ્ય જગ્યાએ મૂકશો. ગંદી જગ્યા અને સાધનો બેદરકારીની ટેવનો નિર્દેશ કરે છે અને પ્રયોગની સફળતાપૂર્વકની કામગીરીને બાધારૂપ બને છે.

આકૃતિ 1.1 : કસનળીમાં દ્રાવણને ગરમ કરવાની સાચી રીત

- કાચના સાધનોની ચોખ્ખાઈની ખાત્રી એ છે કે સાધનને પાણી વડે વીંછળીને એવી રીતે રાખીએ જેથી બધું જ પાણી ઝડપથી બહાર નીકળી જાય અને પાણીના ટીપાં સપાટી પર બાઝે નહિ. જો કાચની સપાટી પર પાણીના ટીપાં ચોંટી રહે તો માનવું કે સાધન ચીકાશવાળું છે. આવી પરિસ્થિતિમાં સાધનને 5% NaOH ના દ્રાવણ વડે અથવા સાબુના પાણીથી ધોયા પછી પાણી વડે સારી રીતે વીંછળી નાંખવું. આમ છતાં પણ જો કચરો કે ડાઘા ચોંટેલા રહી જાય તો ગરમ સાંદ્ર નાઇટ્રિક ઍસિડનો ઉપયોગ સાફ કરવા માટે કરી શકાય. આમ છતાં પણ જો કચરો કે ડાઘ રહી જાય તો તેને કોમિક ઍસિડ વડે (જેને કોમોસલ્ફ્યુરિક ઍસિડ પણ કહે છે) સાફ કરી શકાય. એક લિટર કોમિક ઍસિડ દ્રાવણ બનાવવા માટે 100 g પોટેશિયમ ડાયકોમેટને એક લિટર સાંદ્ર સલ્ફ્યુરિક ઍસિડમાં ઓગાળવામાં આવે છે. તે ખૂબ જ દાહક પ્રવાહી છે અને તેથી તેનો કપડાં અથવા ચામડી સાથે સંપર્ક ન થાય તેનું ખાસ ધ્યાન રાખવું.
- જેમાં ઝેરી અથવા બળતરા કરે તેવા ધુમાડા ઉત્પન થતાં હોય તેવા પ્રયોગોને ધૂમાડા કબાટમાં (fume cupboard) કરવા.
- પ્રયોગશાળામાં કામ કરતી વખતે બારી અને બારણાં ખુલ્લા રાખવા અને નિષ્કાસ પંખો ચાલુ રાખવો જેથી ઝેરી બાષ્ય ઝડપથી બહાર ખેંચાઈ જાય અને તાજી હવાની સગવડ મળી રહે.

પ્રસ્તાવના

 જો તમો ઉપર દર્શાવેલ આ કરશો અને આ ન કરશો ને અનુસરશો, તો તમારો પાયાની વૈજ્ઞાનિક પ્રવિધિઓને શીખવાનો અનુભવ જરૂર ખૂબ આનંદ ભરેલો રહેશે.

આગળના પાનાઓમાં તમને પ્રયોગશાળાનાં પાયાના સાધનો, પદ્ધતિઓ અને રસાયણવિજ્ઞાનની પ્રયોગશાળામાં કામ કરવા માટે જરૂરી પ્રવિધિઓ વિશે પરિચય કરાવવામાં આવશે. ચાલો, આપણે રસાયણવિજ્ઞાનમાં વપરાતી વૈશ્લેષિક પદ્ધતિઓના પરિચયથી જ શરૂઆત કરીએ.

1.2 વૈશ્લેષિક પદ્ધતિઓ (Analylitical Methods)

તત્ત્વ અને તેના સંયોજનો તેમની ભૌતિક ખાસિયતોથી શોધી શકાય છે. આવી ખાસિયતોમાં તેમની ભૌતિક અવસ્થા, રંગ, વાસ, ચમક, ગલનબિંદુ, ઉત્કલનબિંદુ, ઉર્ધ્વગમન, ગરમ કરતાં જ્યોતને આપતા રંગ, સખતાઈ, સ્ફટિકમય અવસ્થા અથવા અસ્ફટિકમય અવસ્થા, પાણી અને બીજા દ્રાવકોમાં દ્રાવ્યતા વગેરે છે. આમ છતાં પણ ઘણી વખત ભૌતિક ખાસિયતોનાં આધારે પદાર્થ ઓળખવા અશક્ય હોય છે. આથી રાસાયણિક પદ્ધતિઓ જેવી કે આલ્કલી, ઍસિડ, ઑકિસડેશનકર્તા, રિડકશનકર્તા અને બીજા સંયોજનો સાથેની પ્રક્રિયાઓનો ઉપયોગ પદાર્થની ઓળખ માટે કરવામાં આવે છે. પદાર્થનું પૃથક્કરણ કરવામાં આવે છે જેથી તેના ગુણાત્મક અને જથ્થાત્મક રાસાયણિક સંઘટનને સ્થાપિત કરી શકાય. આથી પૃથક્કરણ (વિશ્લેષણ) કયાં તો ગુણાત્મક અથવા જથ્થાત્મક હોય છે. **ગુણાત્મક પૃથક્કરણનો** ઉપયોગ પદાર્થના તત્ત્વોના સંઘટનની પરખ માટે થાય છે. તેમાં, બનતા આયનોની પરખ અને પદાર્થમાં રહેલા અશુઓના પ્રકારનો સમાવેશ થાય છે. ગુણાત્મક પૃથક્કરણની પદ્ધતિઓ વિવિધ પ્રકારની હોય છે. તે પૃથ્વી પર રહેલા પદાર્થોમાં રહેલા તત્ત્વોનું નિર્ધારણ કરી આપે છે, એટલું નહિ પૃથ્વીથી ઘણા દૂર રહેલા આકાશીય પદાર્થીનું સંઘટન જાણવામાં પણ ઉપયોગી થાય છે. જથ્થાત્મક પ્રથક્કરણ પદાર્થના સંઘટકોના જથ્થા (પ્રમાણ)ને સ્થાપિત (નક્કી) કરવામાં મદદરૂપ થાય છે. તે ઊર્જા ફેરફારોના માપન માટે પણ મદદ કરે છે.

1.3 પ્રયોગશાળાના પાયાના સાધનો અને પદ્ધતિઓ (Basic Laboratory Equipments and Procedures)

ગરમ કરવું, ગાળણ, નિતારણ, ઘન અને પ્રવાહીના કદ માપવા અને વજન કરવા વગેરે પ્રયોગશાળાની કેટલીક પાયાની પદ્ધતિઓ છે, જે રાસાયણિક પ્રયોગશાળામાં પ્રયોગકાર્ય દરમિયાન વારંવાર જરૂરી બને છે. આ હેતુ માટે જરૂરી કેટલાક વિશિષ્ટ સાધનો આકૃતિ 1.2 અને 1.3 માં દર્શાવેલ છે. તમે પ્રયોગ કરશો તે દરમિયાન તેમના ઉપયોગ વિશે શીખશો. કેટલાક સામાન્ય સાધનોના ઉપયોગ માટે માર્ગદર્શિકાઓ આપવામાં આવેલી છે.

આકૃતિ 1.2 : પ્રયોગશાળાના સામાન્ય સાધનો

આકૃતિ 1.3 : પ્રયોગશાળાના સામાન્ય / કાચના સાધનો

કસનળી (Test Tubes)

જુદા જુદા કદની કસનળીઓ પ્રાપ્ય છે પણ સામાન્ય રીતે આ કક્ષાના રાસાયણિક પ્રાયોગિક કાર્ય માટે 125 mm (લંબાઈ) × 15 mm (વ્યાસ), 150 mm (લંબાઈ) × 15 mm (વ્યાસ) અને 150 mm (લંબાઈ) × 25 mm (વ્યાસ)ની કસનળીઓ વપરાય છે. કસનળી તેના મુખ આગળ ધાર (rim) ધરાવતી અથવા ધાર વગરની મળે છે. ઓછી પહોળાઈવાળી કસનળી પ્રક્રિયા કરવા માટે વપરાય છે. જેમાં ગરમ કરવાની જરૂર નથી પડતી અથવા બહુ થોડા સમય માટે ગરમી આપવી પડતી હોય તેમાં વપરાય છે. પ્રક્રિયા કરતી વખતે કસનળીનો માત્ર 1/3 ભાગ જ પ્રવાહીથી ભરવો જોઈએ. મોટા વ્યાસવાળી કસનળી જેને ઉત્કલન નળી કહે છે. જયારે દ્રાવણના વધુ જથ્થાને ગરમ કરવાનું હોય ત્યારે તેનો ઉપયોગ થાય છે. જયારે કસનળીમાંના મિશ્રણને અથવા દ્રાવણને ગરમ કરવામાં આવે છે, ત્યારે કસનળીને પકડવા માટે કસનળીહોલ્ડરનો ઉપયોગ કરવામાં આવે છે. કસનળીનું સ્ટેન્ડ દ્રાવણ ભરેલી કસનળીઓને સીધી ઉભી ગોઠવવા માટે ઉપયોગમાં લેવાય છે (આકૃતિ 1.4).

આકૃતિ 1.4 : ઉત્કલન નળી અને જુદા જુદા માપ (કદ)ની કસનળી ગોઠવેલું સ્ટેન્ડ

ફલાસ્ક (ચંબુ)

પ્રયોગશાળામાં સામાન્ય રીતે ગોળ તળિયાવાળા અને કોનિકલ ફલાસ્ક (જેમને અર્લેનમેયર ફલાસ્ક પણ કહે છે) વપરાય છે. તે 5 mL થી 2000 mL સુધીની જુદી જુદી ધારિતાવાળા (capacity) મળે છે. ફલાસ્કની ધારિતા અને માપની પસંદગી કેટલા જથ્થાના દ્રાવણ સાથે કાર્ય કરવાનું છે અને કયા પ્રકારની પ્રક્રિયા કરવાની છે તેના પર આધાર રાખે છે. સામાન્ય રીતે ગરમ કરવા માટે અથવા ગોળ તળિયાવાળા ફલાસ્કમાં લીધેલ પ્રક્રિયા મિશ્રણને પશ્ચવાહી (refluxing) પ્રક્રિયા દરમિયાન ગરમ કરવા માટે સીધી જ જયોત / રેત ઉષ્મક / જળ ઉષ્મક વપરાય છે. કોનિકલ ફલાસ્કનો ઉપયોગ કેટલીક પ્રક્રિયાઓને ઓરડાના તાપમાને અથવા નીચા તાપમાને ગરમ કરવા માટે વપરાય છે. તે વિશિષ્ટ રીતે કદમાપક અનુમાપન કરવામાં વપરાય છે.

પ્રસ્તાવના

બીકર

5mL થી 2000 mL જેટલી ધારિતા ધરાવતા જુદા જુદા બીકર પ્રાપ્ય હોય છે અને તે દ્રાવણ બનાવવા માટે, અવક્ષેપન પ્રક્રિયા કરવા માટે અને દ્રાવકોના બાખ્પીભવન માટે વપરાય છે.

ભિન્નકારી (અલગીકરણ) ગળણી.

આ ગળણી અમિશ્રિત રહેતા પ્રવાહીને અલગ કરવા માટે વપરાય છે. જુદા જુદા માપની અને આકારની ભિન્નકારી ગળણીઓ પ્રાપ્ય હોય છે (આકૃતિ 1.5).

સંઘનિત્ર (condensers)

સંઘનિત્રનો ઉપયોગ બાષ્યને પ્રવાહી સ્વરૂપ (કલા)માં સંઘનિત કરવા માટે વપરાય છે. સામાન્ય રીતે પ્રયોગશાળામાં બે પ્રકારના સંઘનિત્ર વપરાય છે. (a) હવા (air) સંઘનિત્ર અને (b) જળ (water) સંઘનિત્ર. હવા સંઘનિત્ર આકૃતિ 1.6 (a) માં દર્શાવેલ છે. હવા સંઘનિત્રના કાચની નળીની લંબાઈ અને વ્યાસ અલગ અલગ હોય છે. આમાં ગરમ બાષ્યમાંથી ઉષ્મા ઝડપથી પર્યાવરણીય હવામાં બદલી પામે છે અને બાષ્યનું સંઘનન થાય છે.

જળ સંઘનિત્રમાં અંદરની નળીને ફરતે બહાર કાચનું આવરણ (jacket) હોય છે [આકૃતિ 1.6 (b)] તેમાં પાણી અંદર દાખલ થવાનો માર્ગ અને ફરતા પાણીને બહાર નીકળવાનો માર્ગ હોય છે. પાણી અંદર જવાના પ્રવેશદ્વારને પાણીના નળ સાથે જોડવામાં આવે છે. ગરમ બાષ્યમાંથી ઉષ્મા આજુબાજુના પાણીમાં સ્થાનાંતર પામે છે.

ઊંચા ઉત્કલન બિંદુ ધરાવતા પ્રવાહી અથવા દ્રાવશના પશ્ચવાહન કે નિસ્યંદન માટે હવા સંઘનિત્ર વપરાય છે. નીચા તાપમાને ઉકળતા પ્રવાહી માટે જળ સંઘનિત્ર વપરાય છે.

આકૃતિ 1.6 : (a) હવા સંઘનિત્ર (b) જળ સંઘનિત્ર

આકૃતિ 1.5 : જુદા જુદા આકારની ભિન્નકારી ગળણીઓ

ગ્રાઉન્ડ ગ્લાસ જોડાણ

હાલના સમયમાં ગ્રાઉન્ડ ગ્લાસના જોડાણ ઉપર વર્શવેલા સાધનોમાં હવા કે પાણીને દાખલ થવા માટે કે બહાર નીકળવા માટે ઉપયોગમાં લેવાય છે, જેથી બૂચનો ઉપયોગ ઓછો કરવો પડે છે. જુદા જુદા માપના ગ્રાઉન્ડ ગ્લાસના સાધનો જોડાણ માટે પ્રાપ્ય હોય છે.

1.4 પ્રક્રિયક બોટલ સાથેની સંભાળ (Handling Reagent Bottle)

આકૃતિ 1.8 : પ્રક્રિયક બોટલમાંથી ઘન પદાર્થ લેવાની પદ્ધતિ

ઘન અને પ્રવાહી પ્રક્રિયકોને તેમની પ્રક્રિયક બોટલમાંથી કાઢવાની (લેવાની) સાચી રીતો આકૃતિ 1.8 અને 1.9 માં અનુક્રમે દર્શાવેલ છે. પ્રક્રિયક બોટલમાંથી પ્રક્રિયક કાઢતાં પહેલાં દરેકે બે વખત ખાતરી કરી લેવી જોઈએ કે પ્રક્રિયક બોટલ પરનું લેબલ બરાબર છે અને તમે સાચો જ પ્રક્રિયક લોટલો અથવા ડ્રોપિંગ બોટલમાં રાખવામાં આવે છે. પ્રક્રિયક બોટલોનો ઉપયોગ કરતી વખતે તેનો કાચનો બૂચ સાફ ગ્લેઝ ટાઈલ પર મૂકવો. કદી પણ બૂચને ટેબલ પર મૂકવો નહિ, કારણ કે તે ટેબલ પરની ધૂળ સાથે સંયોજાય અને પ્રક્રિયકને અશુદ્ધ બનાવે. પ્રક્રિયક લીધા પછી તરત જ બૂચ બંધ કરી દો. આકૃતિ 1.9 માં બોટલમાંથી પ્રક્રિયક ઉમેરવાની (રેડવાની) સાચી રીત દર્શાવી છે. જયારે બોટલમાંથી પ્રવાહી સીધું જ બીકરમાં રેડવાનું હોય, ત્યારે કાચના સિળયાનો ઉપયોગ કરો. કાચના સિળયાને બોટલના મુખ પાસે રાખી પ્રવાહી લો. જેથી પ્રવાહી બહાર ઢોળાઈ જાય નિહ કે વધારે પડી જાય નહિ.

પ્રસ્તાવના

પ્રથમ : લેબલ બેવાર વાંચો

બીજું : દાટાને પકડી રાખો અને જ્યાં સુધી બોટલમાંનો પદાર્થ તેને ભીનો ન કરે ત્યાં સુધી બોટલ નમાવી રાખો

ત્રીજું : પ્રવાહી લો, ભીંજવેલી ગરદન અને ધાર પ્રથમ ટીપાંને બહાર નીકળી જતુ રોકશે

કાચના સળિયાની સપાટી પરથી પ્રવાહી નીચે રેડો

બીકરમાંથી રેડો ત્યારે હલામણા સળિયાને (stirring rod) આ સ્થિતિમાં પકડી રાખો

આકૃતિ 1.9: પ્રવાહી રેડવાની પદ્ધતિઓ

જો ડ્રોપરનો ઉપયોગ કરવામાં આવે તો પ્રવાહી લેતી વખતે તે પાત્રમાંના પદાર્થને અડકવું જોઈએ નહિ. ડ્રોપર વડે પ્રવાહી લેવાની સાચી રીત આકૃતિ 1.10 માં દર્શાવેલ છે. બોટલની ડ્રોપરની અદલાબદલી પણ કદી કરશો નહિ. ડ્રોપિંગ બોટલનો ઉપયોગ વધુ અનુકુળ અને સલામત ગણવામાં આવેલ છે.

1.5 ગરમ કરવાના સાધનો (Heating Devices)

પ્રયોગશાળા કાર્ય દરમિયાન ગરમ કરવા માટે ગૅસ બર્નર, સ્પિરિટ લૅમ્પ કે કેરોસીન લૅમ્પની મદદ લઈ શકાય છે. પ્રયોગશાળામાં સામાન્ય રીતે ગૅસ બર્નર તરીકે બુન્સેન બર્નર વપરાય છે (આકૃતિ 1.11). બુન્સેન બર્નરના જુદા-જુદા ભાગો આકૃતિ 1.12 માં દર્શાવેલા છે. આ ભાગોનું વર્શન નીચે પ્રમાણે છે.

આકૃતિ 1.10 : ડ્રોપર વડે પ્રવાહી લેવાની રીત

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

બુન્સેન બર્નર

[A] બુન્સેન બર્નરના ભાગો

1. પાયો (આધાર)

ભારે ધાત્વીય પાયો બાજુની જે નળી સાથે જોડેલ હોય છે, તેને ગેસ ટ્યુબ (નળી) કહે છે. સ્રોતમાંનો વાયુ બર્નરમાં ગેસ ટયુબ મારફતે દાખલ થાય છે અને નાના કાણા જેને નીપલ અથવા નોઝલ (નાળચું) કહે છે, તેની મારફતે બર્નરમાં દાખલ થાય છે. આ વાયુ ભારે દબાણ સાથે દાખલ થાય છે અને બર્નરની ટ્યુબના ઉપરના ભાગમાં સળગાવવામાં આવે છે.

2. બર્નર ટયુબ

તે એક લાંબી ધાતુની નળી હોય છે અને તેના નીચેના ભાગની પાસે બે એકબીજાની સામસામે સીધી લીટીમાં કાશા આવેલાં હોય છે, જે હવા માટેની બારી બને છે. પાયાની નળીને ગોળ ફેરવી શકાય છે. નોઝલમાંથી આવતો વાયુ કાશા (બારી)માંથી આવતી હવા સાથે ભળે છે અને ઉપરના છેડે સળગે છે.

3. હવા નિયંત્રણ (રેગ્યુલેટર)

તે એક નાની ધાત્વીય ગોળાકાર જાળી (sleeve) જે બે સામ સામે સીધી લીટીમાં હોય છે જ્યારે તેને બર્નર ટયુબમાં ફીટ કરવામાં આવે છે તે બર્નર ટયુબની બારીને આજુબાજુ ગોઠવાય છે. બારીમાંથી હવાના પ્રવાહનું નિયંત્રણ કરવા માટે તેના કાણાનું માપ બાંયને ફેરવીને ગોઠવવામાં આવે છે.

આકૃતિ 1.11 : બુન્સેન બર્નર

આકૃતિ 1.12: બુન્સેન બર્નરના ભાગો

જો હવા બારી બંધ હોય અને ગેસને સળગાવવામાં આવે, તો જ્યોત મોટી અને જ્યોતિમય (ધૂમાડાવાળી અને રંગમાં પીળી) હશે. જ્યોત વડે ઉત્સર્જિત થતો પ્રકાશ અંશતઃ બળેલા ઇંધણના ગરમ કાર્બન કણો દ્વારા અપાતા વિકિરણોને લીધે હોય છે. આ પરિસ્થિતિમાં જ્યોતનું તાપમાન નીચું હોય છે. હવે જો બારી પરની બાંયની ગોઠવણી

પ્રસ્તાવના

એવી હોય કે હવા સાથે મિશ્ર થયેલો ગેસ જયોતમાં પહોંચે અને જયોત ઓછી જયોતિમય હોય છે અને છેવટે વાદળી રંગમાં ફેરવાય છે. જયારે હવાનો પ્રવાહ સાચી રીતે ગોઠવાય છે ત્યારે જયોતનું તાપમાન ઘણું ઊંચું થાય છે. આને જયોતિવિહીન જયોત કહે છે. જયોતના જુદા જુદા વિભાગો આકૃતિ 1.13 માં દર્શાવેલ છે.

બુન્સેન બર્નર જ્યોતના સ્પષ્ટરીતે દશ્યમાન થતાં ત્રણ ભાગોનું વર્શન નીચે કરેલ છે.

આકૃતિ 1.13: બુન્સેન બર્નરની જયોતના ભાગો

[B] બુન્સેન જયોતના મુખ્ય ભાગો (Principal Parts of Bunsen Flame)

1. આંતરિક કાળો શંકુ AEC

આ સૌથી અંદરનો કાળો વિભાગ છે, જે બર્નર ટયુબની તરત ઉપરના ભાગમાં હોય છે. તે નહિ બળેલો ગેસ ધરાવે છે. આ વિભાગ જ્યોતનો સૌથી ઠંડો ભાગ છે અને અહિંયા કોઈ દહન થતું નથી.

2. મધ્યવાદળી શંકુ ADCEA

આ જયોતનો મધ્યભાગ છે. જયારે હવા બારીને થોડી બંધ કરવામાં આવે છે, ત્યારે તે જયોતિમય બને છે. આ ભાગની જયોતિમયતા નહિ બળેલા કાર્બન કશોની હાજરીને કારણે હોય છે, જે કેટલાક ગેસના વિઘટનથી બનેલા હોય છે. આ ક્રણો તાપદીપ્ત (incandescent) સુધી ગરમ થાય છે અને ચળકે છે પણ બળતા નથી આ ભાગમાં દહન સંપૂર્ણ ન થતું હોવાથી તાપમાન વધારે ઊંચું હોતું નથી.

3. બાહ્ય જ્યોતિહીન આવરણ ABCDA

આ જાંબુડિયા રંગનો બાહ્ય શંકુ છે. તે જ્યોતનો સૌથી વધુ ગરમ ભાગ છે. તે વાતાવરણના સીધા જ સંપર્કમાં હોય છે અને તેથી આ વિભાગમાં દહન લગભગ સંપૂર્ણ હોય છે.

બુન્સેને જ્યોતના આ ત્રણ મુખ્ય ભાગોમાં જુદા જુદા છ વિસ્તારો ઓળખાવી બતાવ્યા.

(i) ઉપરનો ઓકિસડાઈર્ઝીંગ વિભાગ (f)

તેનું સ્થાન જ્યોતના જ્યોતિહીન છેડા પર હોય છે. જે હવામાં છે. જ્યોતના આંતરિક ભાગની સરખામણીમાં અહીં હાજર ઑકિસજનનું પ્રમાણ અધિકતમ હોય છે. તાપમાન નીચે જણાવેલ (c) વિસ્તાર જેટલું ઊંચું હોતું નથી. તેને બધી ઑક્સિડેશન પ્રક્રિયાઓમાં વાપરી શકાય છે જેમાં જ્યોતના ઉચ્ચત્તમ તાપમાનની જરૂર પડતી નથી.

(ii) ઉપરનો રિડયુર્સીંગ વિભાગ (e)

આ વિભાગ આંતરિક વાદળી શંકુના છેડા પર હોય છે અને તે તાપદીપ્ત કાર્બનનું ઘણું પ્રમાણ ધરાવે છે. તે ખાસ કરીને ધાતુના ઑકસાઈડનું રિડકશન કરીને ધાતુનું પડ રચે છે.

(iii) જ્યોતનો સૌથી વધુ ગરમ ભાગ (d)

આ ગલન વિભાગ છે. તે જ્યોતની લંબાઈના લગભગ 1/3 ભાગમાં પથરાયેલ હોય છે. તે વિસ્તાર જ્યોતના આંતરિક અને બાહ્ય વિભાગથી લગભગ સરખા અંતરે હોય છે. એટલે કે જ્યોતના સૌથી બહારના શંકુથી સરખા અંતરે હોય છે. આ વિસ્તારમાં પદાર્થના ગલનની પરખ થઈ શકે છે. તેને પદાર્થો અથવા મિશ્રણમાંના પદાર્થોની સાપેક્ષ બાષ્પશીલતાની પરખ કરવા ઉપયોગમાં લઈ શકાય છે.

(iv) નીચેનો ઑકિસડાઈઝીંગ વિભાગ (c)

તે જ્યોતના નીચેના ભાગના વિસ્તારની નજીક બહારની સપાટી પર સ્થિત છે અને તેનો ઉપયોગ બોરેક્ષ મણકામાં અથવા સોડિયમ કાર્બોનેટ મણકા વગેરેમાં ભેળવેલા પદાર્થોના ઑકિસડેશન માટે વપરાય છે.

(v) નીચેનો રિડયુર્સીંગ વિભાગ (b)

તે વાદળી શંકુની નજીકના બાહ્ય આંતરિક ધારના આવરણમાં સ્થિત છે અને અહિંયા રિડ્યુસીંગ વાયુઓ હવાના ઑકિસજન સાથે સંયોજાય છે. તે (e) કરતાં ઓછો શકિતશાળી રિડ્યુસીંગ વિભાગ છે અને તેનો ઉપયોગ પિગલિત બોરેક્ષના મણકા અથવા બીજા મણકાના રિડકશન માટે થાય છે.

(vi) સૌથી નીચાં તાપમાનવાળો વિભાગ (a)

જ્યોતના (a) વિભાગનું તાપમાન સૌથી ઓછું હોય છે. તેનો ઉપયોગ બાષ્પશીલ પદાર્થો તે જ્યોતને રંગ પ્રદાન કરે છે કે કેમ તે નક્કી કરવા માટે થાય છે.

[C] બુન્સેન બર્નરની પરત (back) આહનન (striking) ઘટના

આહનન પરત એ ઘટના છે જેમાં જ્યોત બર્નર નળીમાં નીચે તરફ જાય છે અને પાયાના નોઝલ (નાળચા) પાસે બળવાનું શરૂ કરે છે. આ ત્યારે જ બને છે જ્યારે બારી સંપૂર્ણ ખુલ્લી હોય છે. ઘણી હવા અને ઓછા ગેસના પ્રમાણને લીધે જ્યોત અનિયમિત બને છે અને પરત આહનન થાય છે. નળી ઘણી ગરમ થઈ જાય છે અને

પ્રસ્તાવના

અડવાથી દઝાય છે. તે લગાડેલી રબરની નળીને ઓગાળી શકે છે. જો આમ બને તો બર્નર ને તરત જ બંધ કરી દેશો અને તેને પાણીના નળ હેઠળ પાણી વડે ઠંડુ પાડો અને ત્યારબાદ હવા બારીને અંશતઃ ખોલીને ફરીવાર બર્નર ચાલુ કરો (ગેસ સળગાવો).

સ્પિરિટ લેમ્પ (દીવો)

જો પ્રયોગશાળામાં બુન્સેન બર્નર પ્રાપ્ય ન હોય, તો ગરમ કરવા માટે સ્પિરિટ લેમ્પનો ઉપયોગ કરી શકાય છે. આ એવી રચના છે જેમાં સૂતરના દોરાની દીવેટનો એક છેડો સ્પિરિટ ધરાવતા સાધનમાં ડૂબાડવામાં આવે છે અને દીવેટનો બીજો છેડો સાધનના ઉપરના ભાગમાં રહેલા નોઝલ મારફતે બહાર કાઢેલ હોય છે (આકૃતિ 1.14). કેશાકર્ષણ ક્રિયાને કારણે સ્પિરિટ દીવેટ મારફતે ઉપરના ભાગમાં ચઢે છે અને તેને સળગાવી શકાય છે. જયોત જયોતિહીન હોય છે અને તેથી પ્રયોગશાળામાં ગરમ કરવા માટેના બધા જ હેતુઓ માટે વાપરી શકાય છે. દીવાને બુઝાવવા માટે સળગતી દીવેટ પર ઢાંકણ મૂકી દેવામાં આવે છે. કદી પણ ફૂંક મારીને સળગતી જયોતને હોલાવવા માટેનો પ્રયત્ન કરશો નહિ.

સ્પિરિટ ઢાંકણ દીવેટ

આકૃતિ 1.14 : સ્પિરિટ લેમ્પ

કેરોસીનથી ગરમ કરવાનો લેમ્પ (દીવો)

નેશનલ કાઉન્સિલ ઑફ એજ્યુકેશનલ રીસર્ચ એન્ડ ટ્રેનિંગ (NCERT) એ કેરોસીનનો દીવો વિકસાવ્યો છે જે સર્વતોમુખી છે અને સ્પિરિટ લેમ્પનો સસ્તો વિકલ્પ છે. તેને પ્રયોગશાળામાં ગેસ બર્નર અથવા સ્પિરિટ લેમ્પ પ્રાપ્ય હોય નહિ ત્યાં ગરમીના સ્રોત તરીકે વાપરી શકાય છે. કેરોસીન લેમ્પના ભાગો આકૃતિ 1.15 માં દર્શાવેલ છે.

કેરોસીન લેમ્પની કાર્યરીતિ

કેરોસીન વડે અડધા કરતાં વધારે પાત્ર ભરી દેવામાં આવે છે. બહારની જાળી ને દૂર કરવામાં આવે છે અને દીવેટને સળગાવવામાં આવે છે. બાહ્ય જાળીને તેની મૂળ સ્થિતિમાં ગોઠવવામાં આવે છે, ચારેય દીવેટોની જ્યોત જોડાય છે અને મોટી ધૂમાડા વગરની વાદળી જ્યોત મળે છે.

સળગાવેલા ગરમ દીવાને હોલવવા માટે તેને જાળીના ઉપરના ભાગને ધાતુ અથવા એસ્બેસ્ટોસના પતરા (sheet) વડે ઢાંકી દેવામાં આવે છે.

આકૃતિ 1.15: ગરમ કરવાના કેરોસીન લેમ્પના ભાગો

એકમ-2 પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો) (Basic Laboratory Techniques)

પ્રક્રિયાઓ કરવા માટેના પ્રયોગશાળાના સાધનો સામાન્ય રીતે કાચના બનેલા હોય છે. આનું કારણ એ છે કે કાચ મોટા ભાગના રસાયણોની ક્રિયા પ્રત્યે પ્રતિકારક હોય છે. પ્રયોગશાળાના કાર્ય માટેના સાધનો બનાવવા માટેના કાચ સામાન્ય રીતે બે પ્રકારના હોય છે. આ પ્રકારમાં સોડા-લાઈમ કાચ અને બોરોસિલિકેટ કાચ છે.

સોડા લાઈમ કાચ જેને સોડા, લાઈમ સ્ટોન અને સિલિકાને ગરમ કરીને બનાવવામાં આવે છે. બર્નર જ્યોતમાં આશરે 300-400 °C તાપમાને તે ઝડપથી નરમ બને છે. આથી જ સોડાલાઈમ ગ્લાસની નળીઓને ગરમ કરતાં તે સહેલાઈથી નરમ બને છે અને વળી જાય છે. સોડા કાચનો વિસ્તરણ ગુણાંક ઘણો જ ઊંચો છે, તેથી તેને ઝડપથી ગરમ કરતાં કે ઠંડુ પાડતાં તૂટી જાય છે. તેને તૂટવાથી અટકાવવા માટે તેને ધીમે ધીમે ગરમ કરવી અથવા ઠંડી પાડવી. ધીમે પુનરાવર્તિત રીતે ગરમ કરતાં તાપાનુશીતન (annealing) ને લીધે ગરમ કરતાં અથવા ઠંડુ પાડતાં તે તૂટવાથી બચી શકે છે. આવા કાચને તે ગરમ હોય ત્યારે ઠંડી સપાટી પર મૂકવા નહિ, કારણ કે ઝડપથી ઠંડુ પડતાં તે તૂટી જશે.

બોરોસિલિકેટ કાચ 700-800 ℃ થી નીચા તાપમાને નરમ પડતો નથી અને કાર્ય કરવા માટે ઑક્સિજન-કુદરતી વાયુની જ્યોતની જરૂર પડે છે. ઓક્સિજન - કુદરતી વાયુની જ્યોત મેળવવા માટે ઓક્સિજન સાથે કુદરતી વાયુને મિશ્રિત કરવામાં આવે છે. આ કાચનો વિસ્તરણ ગુણાંક નીચો છે અને આ કાચમાંથી બનાવેલા સાધનો તાપમાનમાંના ઝડપી ફેરફારો સામે ટકી રહે છે. આથી જ ગરમ કરવાના હેતુ માટે વપરાતા સાધનોની બનાવટમાં બોરોસિલિકેટ કાચ વપરાય છે. બોરોસિલિકેટ કાચમાંથી બનાવેલ કાચના સાધનો વિકૃત થતાં નથી.

પછીના પાનાઓમાં તમે તમારી જાતને નુકસાન પહોંચાડ્યા સિવાય કાચની નળીઓ અને કાચના સિવાયાના ઉપયોગ માટેની કેટલીક કાર્યપદ્ધતિઓ શીખશો. વળી તમે પ્રયોગશાળાના સાધનો અને ઉપકરણો (equipments) ના ઉપયોગ માટેની કાર્યપદ્ધતિ પણ શીખશો.

2.1 કાચની નળી અને કાચના સળિયાને કાપવું (Cutting of Glass Tube and Rod)

જરૂરી સામગ્રી

- સોડા કાચની નળી 15 cm લાંબી
- સોડા કાચનો સળિયો 15 cm લાંબો
 - ત્રિકોશીય કાનસ એક

પધ્ધતિ

(i) કાચની નળી અથવા કાચના સળિયાને ટેબલ પર મૂકો અને તમારા ડાબા હાથ વડે દબાવો.

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

- (ii) ત્રિકોણીય કાનસના નીચેના ભાગને નિશાની કરવા નળીને લંબ તેની તીક્ષ્ણ ધાર વડે કાપો કરો અને તમારા તરફ ખેંચો જેથી કાચની નળી કે કાચના સળિયા પર એક ઊંડો કાપો ઈચ્છિત લંબાઈએ પડશે (આકૃતિ 2.1 a).
- (iii) તમારા બન્ને હાથના અંગૂઠા બન્ને બાજુ ઘણા નજીક રાખો અને આકૃતિ 2.1 b માં દર્શાવ્યા પ્રમાણે કાપાની વિરૂદ્ધ રાખો. હવે તમારાથી વિરૂદ્ધ દિશામાં તમારા બન્ને અંગૂઠા રાખી અંગૂઠા વડે દબાણ કાચની નળી અથવા કાચના સળિયા પર લગાડો (આકૃતિ 2.1 c). નળી અથવા સળિયાને કપડું રાખી તોડો જેથી તમારા હાથને નુકસાન થાય નહિ.
- (iv) જો કાચની નળી તૂટે નહિ, તો અગાઉ નિશાની કરેલ કાપા પર ઊંડો કાપો બનાવો અને નવેસરથી પ્રયત્ન કરો.
- (v) અસમ ધારને તારની જાળી સાથે ઘસીને સરખી બનાવો (આકૃતિ 2.2 a).
- (vi) તાજી કાપેલી નળીની ધારને ધીમેથી જ્યોતમાં ગરમ કરો અને ધારને ગોળ અને નરમ બનાવો (આકૃતિ 2.2 b). આને અિંગ પોલિશીંગ (fire polishing) કહે છે. અિંગ પોલિશીંગ માટે પ્રથમ કાપેલા છેડાને સતત રીતે બુન્સેન જ્યોતમાં ગરમ કરો અને પછી તેને ધાર ગોળાકાર ન થાય ત્યાં સુધી આગળ પાછળ ફેરવો. વધુ પડતું ગરમ કરવાથી ગોળાકાર ધાર વિકૃત બની જાય છે (આકૃતિ 2.2 c).

આકૃતિ 2.1: (a) કાચની નળી અથવા કાચના સળિયા પર નિશાની કરવી

- (b) કાપાની સામે અંગૂઠાઓ સાથે સાથે ગોઠવો
- (c) કાચનો સળિયો અથવા કાચની નળીને તોડો

આકૃતિ 2.2: (a) અસમ ધારને સમંજન (trimming) કરવી (b) ધારને ગોળ બનાવવી

(c) યોગ્ય રીતે અને અયોગ્ય રીતે ગોળ બનેલી ધાર

17

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સાવચેતી

- (a) કાનસને એક જ વાર ઘસવાથી ઈચ્છિત લંબાઈ પર એક જ ઊંડો કાપો કરો.
- (b) ઈજા ટાળવા માટે કાનસ અને કાચની નળી / સળિયાને તમારા ચહેરાથી શકય તેટલે દૂર રાખીને કાપો કરો અથવા તોડો અને હાથને ઈજા થતી અટકાવવા માટે કાપડના ટુકડાની મદદથી નળી / સળિયો તોડો.

ચર્ચાત્મક પ્રશ્નો

- (i) કાચ શા માટે ચોક્કસ ગલનબિંદુ ધરાવતું નથી ?
- (ii) કાચની નળી અથવા કાચના સળિયાની કાપેલી તાજી ધારને ગોળાકાર બનાવવાની શા માટે જરૂરી છે ?

2.2 કાચની નળીને વાળવી (Bending of a Glass Tube)

જરૂરી સામગ્રી

- કાચની નળી : 20 25 cm લાંબી
- ત્રિકોણીય કાનસ : એક

પધ્ધતિ

- (i) વિભાગ 2.1માં વર્શન કર્યા પ્રમાણે ત્રિકોણીય કાનસની મદદ વડે ઈચ્છિત લંબાઈની નળીને કાપો.
- (ii) નળીને બુન્સેન બર્નરની જ્યોતના સૌથી વધુ ગરમ વિભાગમાં ગોઠવો અને જ્યાંથી તેને વાળવાની છે તે ભાગને ગરમ કરો (આકૃતિ 2.3 a).
- (iii) જ્યારે નળીને જ્યોતમાં ગરમ કરો ત્યારે તેને ગોળ ગોળ ફેરવતા રહો જ્યાં સુધી જે ભાગ વાળવાનો છે તે લાલચોળ અને નરમ થાય નહિ અને તે પોતાના વજનથી વળવાનું શરૂ કરશે (આકૃતિ 2.3 b).

આકૃતિ 2.3: (a) નળીને ગરમ કરવી

- (b) નળી નરમ પડે છે અને પોતાના જ વજનથી વળે છે
- (c) વળાંકને સમતલીય બનાવો

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

- (iv) નળીને જ્યોતમાંથી દૂર કરો અને તેને ધીમે ધીમે ઈચ્છિત ખૂશા પ્રમાશે ગ્લેઝટાઈલ સામે દબાવીને વાળો જેથી વળાંક સમતલીય રહે (આકૃતિ 2.3 c). વળાંક માટે ધીમી પ્રક્રિયા કાચની નળીને ચપટી થતી અટકાવે છે (આકૃતિ 2.4).
- (v) ગ્લેઝટાઈલ પર મૂકી તેને ઠંડી પાડો (આકૃતિ 2.3 c).
- (vi) આકૃતિ 2.5 માં દર્શાવ્યા પ્રમાણે નળીઓને જુદા જુદા ખૂણે વાળો.

આકૃતિ 2.4 : યોગ્ય અને અયોગ્ય વળાંક તરફ દષ્ટિપાત

આકૃતિ 2.5: જુદા જુદા ખૂશાવાળા વળાંક

સાવચેતી

- (a) નળીને માત્ર એક જ બાજુ પર ગરમ કરવાનું ટાળો અને ગરમ કરો તે દરમિયાન ગોળ ગોળ ફેરવતા રહો.
- (b) કાચની નળીની યોગ્ય લંબાઈ (લગભગ 30 cm લાંબી) પસંદ કરો જેથી કરીને તમારા હાથને ગરમીથી દૂર સલામત રાખી શકો.
- (c) કાચની નળીને ચપટી બનતી અટકાવવા માટે જ્યારે નળીને વાળો ત્યારે ધીમે ધીમે ગરમ કરો.

ચર્ચાત્મક પ્રશ્નો

- (i) ગરમ કરીએ ત્યારે નળીને શા માટે ગોળ ગોળ ફેરવવી જોઈએ ?
- (ii) શા માટે લાલ ચોળ (રક્ત તપ્ત) નળીને ધીમેથી વાળવી જોઈએ ?

2.3 પ્રધાર (જેટ - Jet) નું બનાવવું (Drawing out a Jet)

જરૂરી સામગ્રી

- કાચની નળી : 20 25 cm લાંબી
- ત્રિકોણીય કાનસ : એક
- કાચ પેપર (sand paper) : જરૂર પ્રમાણે

19

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

પધ્ધતિ

- જેટના નિર્માણ માટે યોગ્ય વ્યાસવાળી કાચની નળી પસંદ કરો. (i)
- ત્રિકોણીય કાનસની મદદ વડે ઈચ્છિત લંબાઈની કાચની નળી કાપો. (ii)
- નળીને બન્ને છેડા પરથી પકડીને બુન્સેન બર્નરની જ્યોતના સૌથી વધુ ગરમ (iii) ભાગમાં ગરમ કરો.
- નળીને ધીમે ધીમે ફેરવતા રહો, જેથી જે ભાગ જ્યોતમાં રાખેલ છે તે લાલ તપ્ત (iv) બને.
- નળીને જ્યોતમાંથી ખસેડી લો અને બન્ને છેડા ને ધીમે ધીમે એકબીજાથી અલગ (v) ખેંચો, જેથી તે વચમાંથી સાંકડી બને અને ત્યારબાદ તે આકૃતિ 2.6 b માં દર્શાવ્યા પ્રમાણે પાતળી જેટમાં ખેંચાઈ જાય.
- નળીને મધ્યમાંથી કાપો (આકૃતિ 2.6 c) અને જેટને કાચ પેપર વડે ઘસીને અને અગ્નિ પોલિશીંગ વડે એકસરખી બનાવો.

આકૃતિ 2.6: (a) જેટ ખેંચવા માટે નળીને ગરમ કરવી (b) કાપતાં પહેલા (c) કાપ્યા પછી

સાવચેતી

જ્યારે જેટ ખેંચો ત્યારે લાલતપ્ત નળીના બન્ને છેડાને ધીમેથી એકબીજાથી અલગ ખેંચો, જેથી તે એકસરખી પાતળી બને.

ચર્ચાત્મક - પ્રશ્નો

- જેટ બનાવવા માટે કયા પ્રકારનો કાચ વધારે સારો છે ? (i)
- શા માટે નાના વ્યાસવાળી કાચની નળીની પસંદગી જેટ બનાવવા માટે વપરાય છે ?

2.4 બૂચમાં છિદ્ર (કાણું) પાડવું (Boring a Cork)

જરૂરી સામગ્રી

• રબરના બુચ

ઃ જરૂર પ્રમાશે

• બૂચમાં છિદ્ર પાડવાનો સેટ : એક

• િલસરીન દ્રાવણ (છાજલી પ્રક્રિયક) : જરૂર પ્રમાણે

20

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

પધ્ધતિ

- (i) રબરના બૂચની બન્ને બાજુએ જે જગ્યાએ છિદ્ર પાડવાનું છે તેના પર નિશાની કરો (આકૃતિ 2.7 a).
- (ii) છિદ્રમાં દાખલ કરવાની નળીના વ્યાસ કરતાં થોડા નાના માપના વ્યાસવાળો છિદ્રક (borer) પસંદ કરો (આકૃતિ 2.7 b).
- (iii) આકૃતિ 2.7 c માં બતાવ્યા પ્રમાણે બૂચના નાના ભાગને ઉપરની દિશામાં ટેબલ પર મૂકો અને બૂચને તે સ્થિતિમાં પકડી રાખો (આકૃતિ 2.7 c).
- (iv) બૂચને તે સ્થિતિમાં ડાબા હાથથી પકડી રાખો અને પાણી અથવા ગ્લિસરીનમાં બોળ્યા પછી ઉજણવાળા કરેલા છિદ્રકને જ્યાં છિદ્ર માટે ડ્રિલ કરવાનું છે, તે જગ્યાએ રાખો. પાણી અથવા ગ્લિસરીન વડે છિદ્રકનું ઉજણ કરવાથી લીસું છિદ્ર પાડી શકાય છે.
- (v) હવે છિદ્રકને પકડીને સીધું જ નીચેની દિશામાં દબાવો અને છિદ્રકને ફેરવતા જાવ, જેથી છિદ્ર ડ્રિલ થતું જાય અને સાથે સાથે ધીમેથી દબાણ પણ લગાડતા રહો.
- (vi) એક જ બૂચમાં બે છિદ્રો માટે બન્ને છિદ્રો વચ્ચે યોગ્ય અંતર રાખો અને યોગ્ય માપના છિદ્રક વાપરો.

આકૃતિ 2.7 : (a) નિશાની કરેલ બૂચ (b) છિદ્રકની પસંદગી (c) છિદ્ર કરવાની પદ્ધતિ

સાવચેતી

- (a) બૂચની બન્ને બાજુએ નિશાની કરો અને યોગ્ય માપનું છિદ્રક પસંદ કરો.
- (b) લીસું છિદ્ર મેળવવા માટે અડધા છિદ્રને એકબાજુથી અને બીજા અડધા છિદ્રને બૂચની બીજી બાજુએથી ડ્રિલ કરો.

ચર્ચાત્મક પ્રશ્નો

- (i) છિદ્ર પાડવાની ક્રિયામાં ગ્લિસરીન શું ભાગ ભજવે છે ?
- (ii) છિદ્રમાં દાખલ કરવાની નળીના વ્યાસ કરતાં છિદ્રકનો વ્યાસ શા માટે નાનો રાખવામાં આવે છે ?

આકૃતિ 2.8 : કસનળીમાં દ્રાવણને ગરમ કરવું

આકૃતિ 2.9 : બીકરમાં દ્રાવણને ગરમ કરવું

2.5 દ્રાવણને કસનળીમાં ગરમ કરવું (Heating Solution in a Test Tube)

કસનળીમાં લીધેલા દ્રાવણને જો બર્નર પર ગરમ કરવાનું હોય, તો કસનળી હોલ્ડરની મદદ વડે કસનળીને કેટલાક અંશના ખૂશે રાખી પ્રવાહીની નીચેની સપાટીના ભાગને ગરમ કરવામાં આવે છે. નહિ કે તળીયે રહેલા પ્રવાહીને (આકૃતિ 2.8).

જયારે ગરમ કરો ત્યારે, અવારનવાર કસનળીને હલાવતા રહો. જો કસનળીને તળીયેથી ગરમ કરવામાં આવે, તો પરપોટા બને અને કસનળીમાંના દ્રાવણને ઉછાળીને કસનળીની બહાર ફેંકી દે આને ઉછાળો (bumping) કહે છે. જો કસનળીનું મુખ તમારી તરફ અથવા તમારી નજીક કામ કરતાં અન્ય કોઈના તરફ હોય, તો ભયંકર અકસ્માત સંભવી શકે છે. આથી તમે જ્યારે કસનળીને બર્નર પર ગરમ કરતાં હોવ ત્યારે કસનળીનું મુખ તમારા કોઈના તરફ ન હોય તેની કાળજી લેવી. જો કસનળીમાંના પદાર્થને ઉત્કલનબિંદુ સુધી ગરમ કરવાનું હોય, તો કસનળીમાં 1/3 ભાગ જ દ્રાવણથી ભરવો.

2.6 બીકર અથવા ફ્લાસ્ક્રમાં દ્રાવણને ગરમ કરવું (Heating Solution in a Beaker or Flask)

જો પ્રવાહીને બીકર અથવા ફ્લાસ્કમાં ગરમ કરવાનું હોય, તો બીકર અથવા ફ્લાસ્કને તારજાળી પર મૂકો અને તેને ત્યારબાદ ત્રિપોઈ સ્ટેન્ડ પર મૂકો (આકૃતિ 2.9).

સલામત રીતે ઉકાળવા માટે એ સલાહભરેલું છે, કે તૂટેલી ચાઈના ડીશના ટુકડા અથવા કાર્બોરન્ડમ / કાચની ગોળીઓ / એક છેડેથી બંધ કરેલી કેશનળી અથવા પ્યુમાઈસ પથ્થર જેવા પ્રક્રિયા ન કરતાં નાનાં પદાર્થો ઉમેરવા, જેથી ઉછાળો ટાળી શકાય.

નોંધ

- (i) જાડી દીવાલોવાળા સાધનોમાં કદી ગરમ કરવું નહિ, કારણ કે તે તૂટી જાય. પદાર્થને ગરમ કરવા માટે સામાન્ય રીતે બોરોસિલિકેટ કાચના સાધનો વપરાય છે.
- (ii) જે સાધનો કદ માપવા માટે વપરાય છે, તેમને પણ ગરમ કરવા જોઈએ નહિ. કારણ કે ગરમ કરવાથી તેમાં વિકૃતિ આવે અને માપનઅંક ગેરવ્યાજબી ઠરે.

2.7 ગાળણ (Filtration)

ગાળણમાં ઘન પદાર્થને પ્રવાહીમાંથી છિદ્રાળુ પદાર્થમાંથી પ્રવાહીને પસાર કરીને અલગ કરવાનો સમાવેશ થાય છે. ગાળણમાં છિદ્રાળુ ગાળણકર્તા પદાર્થ કાપડનો ટુકડો, સિન્ટર્ડ (sintered) ગ્લાસ, પેપર, એસ્બેસટોસ વગેરે હોઈ શકે છે. જુદા જુદા માપના છિદ્રોવાળા ગાળણપત્ર પ્રાપ્ય છે. જો ગાળણપત્રના છિદ્રો મોટા હોય, તો પ્રવાહી તેમાંથી સહેલાઈથી પસાર થઈ જાય છે અને ગાળણ ઝડપી થશે. નાના કદના ઘન કણો પણ ગાળણમાંથી પસાર થઈ જશે, એટલા માટે ગાળણની પદ્ધતિની પસંદગી અને ગાળણ પામનાર પદાર્થીનો આધાર ગાળણપત્ર પર જાળવી રાખવાના કશોના કદ પર રહેલો છે.

એક

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

જરૂરી સામગ્રી

• ગળણી : એક

બીકર : બેફનેલ સ્ટેન્ડ : એક

• કાચનો સળિયો

• ગાળણપત્ર : જરૂર પ્રમાણે

પધ્ધતિ

- (i) આકૃતિ 2.10 માં દર્શાવ્યા પ્રમાણે ગાળણપત્રને ગળણીમાં બરાબર ગોઠવાય તે પ્રમાણે વાળો. આ માટે ગોળાકાર ગાળણપત્રને વાળીને અડધો કરો. ખૂણામાંથી ગાળણપત્રનો નાનો ટુકડો (છેડો) ફાડી નાંખીને ફરી એક વાર વાળો.
- (ii) વાળેલા ગાળણપત્રની ત્રણબાજુ એક તરફ અને એકબાજુ બીજી તરફ રહે, તે પ્રમાણે અને ફાડેલા છેડાનો ભાગ બહારની બાજુ રહે, તે પ્રમાણે શંકુ આકારમાં ફેરવો. શંકુને ગળણીમાં ગોઠવો. એ સાવચેતી રાખો કે શંકુ ગળણીની ધારથી એક સેમી નીચે ગોઠવાય.

(iii) ગાળશપત્રને દ્રાવક જે સામાન્ય રીતે પાણી હોય છે, તેના વડે ભીનું કરો અને તેને શંકુ કાચની ગળશીની અંદરની સપાટી પર એવી રીતે ગોઠવો, કે કાચ અને શંકુ કાગળ વચ્ચે હવા રહે નહિ તે પ્રમાણે ચુસ્ત રીતે ગોઠવાય.

(iv) વધારે પાણી ઉમેરો. જેથી ગળણીનો છેડો પાણીથી ભરાય. જો ગાળણપત્ર સાચી રીતે (ચોટયું) ગોઠવાયું હશે, તો ગળણીના છેડામાં ગાળણપત્ર પાણીના સ્તંભને ટેકો આપશે. પાણીના આ સ્તંભનું વજન મંદ ચૂસણ (suction) ઉત્પન્ન કરે છે, જે ગાળણને ઝડપી બનાવે છે (આકૃતિ 2.11).

આકૃતિ 2.11 : ગાળણની પદ્ધતિ

23

પ્રયોગશ

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સાવચેતી

- (a) ગળણીનો છેડો બીકર કે જેમાં ગાળણ એકઠું કરવામાં આવે છે, તેની બાજુએ અડકવો જોઈએ. જેથી નીચે પડતાં ટીપાં બહાર ઢોળાઈ જાય નહિ.
- (b) ગાળણપત્રને 2/3 ભાગથી વધારે ભરવું નહિ. જો ગાળવાના પ્રવાહીની સપાટી શંકુની સપાટીથી ઉપર થઈ જાય, તો ગાળણ થયા વગરનું પ્રવાહી ગાળણ એકઠું કરવા, માટે નીચે રાખેલ બીકરમાં પડશે.

નોંધ

(i) ઝડપી ગાળણ માટે, ખાંચાવાળા (fluted) ગાળણપત્ર ફાયદાકારક રીતે વપરાય છે. સામાન્ય પત્ર ચાર વખત વાળવાને બદલે 6 અથવા 16 વખત વાળવામાં આવે છે અને પછી અંદરની અને બહારની બાજુએ ફેરવવામાં આવે છે. આ પત્રને ખોલતાં આપણને ખાંચાવાળા ગાળણપત્રનો શંકુ મળે છે. જેથી કટક (ridge) એક ટોચ પર મળે છે. ગાળણ માટે મોટી સપાટી મળતી હોવાને કારણે ગાળણ ઝડપી બને છે (આકૃતિ 2.12).

આકૃતિ 2.12 : ગાળણપત્રને વાળવો જેથી ખાંચાવાળો ગાળણપત્ર શંકુ મળે

(ii) પ્રવાહીમાંથી ઘનને અલગ કરવા માટે ગાળણ બે તબક્કામાં કરવું જોઈએ. પ્રથમ તબક્કામાં લગભગ બધું જ પ્રવાહી સાવચેતીપૂર્વક હલામણાના સિળયાની મદદ વડે રેડી દેવું (આકૃતિ 2.11). જ્યારે મિશ્રણના થોડા મિલિલિટર રહે ત્યારે તેને હલાવીને બીકરમાં ધીમેથી ઉમેરી દેવું. ત્યારબાદ બીકરની બાજુઓને પાણીના પ્રવાહ વડે વીંછળવામાં આવે છે અને સામગ્રીને ફરીથી ગળણીમાં ઉમેરવામાં આવે છે. વીંછળવાનું ફરી ફરી કરવામાં આવે છે. જેથી બીકર અને હલામણા સિળયો સ્વચ્છ થાય. એ વધારે સારું રહે છે કે ઘન-પ્રવાહી મિશ્રણને કાચના સિળયાની ધાર પર રેડવામાં આવે (આકૃતિ 2.11). એ ધ્યાન રાખવું જોઈએ કે હલામણા

આકૃતિ 2.13 : ચૂસણ (Suction) ગાળણ

સળિયા વડે ગાળણપત્ર ફાટી જાય નહિ.

યૂસણ (Suction) ગાળણ : ઉપર પ્રમાણેની રીતમાં ગાળણ ધીમું હોય છે. તેને ચૂસણનો ઉપયોગ કરી ઘટાડેલા દબાણે ગાળણ કરીને ઝડપી બનાવી શકાય છે. ચૂસણ પાણી ચૂસક (aspirator) (આકૃતિ 2.13) વડે અથવા શૂન્યાવકાશ પંપ વડે કરી શકાય છે. પાણી ચૂસકને પાણીના નળ સાથે રબર ટયુબની મદદથી ગોઠવી શકાય છે (ફીટ કરી શકાય છે). તે બાજુના ભૂજા (arm) વડે હવાને ખેંચવા માટે પાણીનો ઝડપી પ્રવાહ રાખવામાં આવે છે. ચૂસણ ઘણું પ્રબળ હોય છે, તેથી ખાસ ગળણી જેને બૂકનર ગળણી કહે છે, તેનો ગાળણ માટે ઉપયોગ થાય છે. તેને ગાળણ ફ્લાસ્કના મુખ પર રબરના બૂચ દ્વારા ગોઠવવામાં આવે છે (આકૃતિ 2.13).

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

સુધારણા (Improvisation)

જો તમારી પાસે બુકનર ગળણી હોય નહિ અથવા ઘણો થોડો પદાર્થ ગાળવાનો હોય, તો ચૂસણ ગાળણ માટે નીચેના સુધારેલા સાધનથી પ્રયત્ન કરો. એક કાચનો સળિયો લો અને ખાત્રી કરો કે તે ગળણીના છેડામાંથી મુક્ત રીતે પસાર થઈ શકે છે. કાચના સળિયાના એક છેડાને બુન્સેન બર્નર જ્યોતમાં ગરમ કરીને ચપટો બનાવી દો અને ગ્લેઝ ટાઈલ સામે દબાવો. સળિયાનો આ ચપટો ભાગ હવે ગરણીના છેડાના ભાગમાં સારી રીતે ફીટ થશે.

સળિયાની લંબાઈને કાપી નાંખીને નાનો ભાગ બનાવો. નાના છેડાવાળું બટન બને છે. નીચેની આકૃતિમાં બતાવ્યા પ્રમાણે બટનને ગળણીમાં ફીટ કરી દો.

ગોળાકાર ગાળણ પત્રનો નાનો ટુકડો એટલા માપનો કાપો, જે ચપટા બટનનું આવરણ બની શકે, અને ગળણીની બાજુઓને માત્ર અડકે. ગાળણ પત્રને ભીનું કરો અને આ સુધારેલી ગળણી બુકનર ગળણીની બદલીમાં વાપરો. આ બટનની જગ્યાએ ખમીસના બટનનો ઉપયોગ કરવાનો પ્રયત્ન કરો.

2.8 પ્રવાહીનું કદ માપવું (Measuring Volume of Liquids)

સામાન્ય રીતે કદમાપક ફ્લાસ્ક, અંકિત નળાકાર, પિપેટ અને બ્યુરેટ પ્રવાહીના કદ માપવા માટે વપરાય છે. કદમાપક ફ્લાસ્ક અને નળાકાર અમુક તાપમાને પ્રવાહીનું કદ માપવા માટે અંકિત કરેલા હોય છે. અમુક નિશ્રિત તાપમાને પ્રવાહીનું ચોક્કસ કદ લેવા માટે પિપેટ અને બ્યુરેટને અંકિત કરેલી હોય છે. તેની ધારણ શક્તિની નિશાની સામાન્ય રીતે સાધનના કાચ ઉપર નિરેખણ (etching) કરેલ હોય છે.

જલીય દ્રાવશો કાચની સપાટીને ભીંજવે છે, માટે જ્યારે આ સાધનોમાં પ્રવાહી ભરવામાં આવે, ત્યારે તે અંતર્ગોળ વક્ર સપાટી (meniscus) બનાવે છે. સપાટીનો મધ્યભાગ લગભગ સપાટ હોય છે (આકૃતિ 2.14 a). સપાટીના આ ચપટા ભાગ સાથે સમરૂપ

આકૃતિ 2.14 :(a) કાચના સાધનમાં પાણી રચતી વક્ર સપાટી (મેનિસ્કસ) (b) વાંચનઆંકની નોંધ

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

આકૃતિ 2.15 : અંકિત નળાકાર

આકૃતિ 2.16 : બ્યુરેટ

(coinciding) સાથેનું માપાંકન (calibration) પ્રવાહીના કદનું માપ આપે છે. આથી જયારે કદની અંતિમ સમાયોજન (adjustment) અથવા વાંચનની નોંધ કરતી વખતે વક્ર સપાટી નિરેખણ કરેલી નિશાની સાથેની સપાટીને આંખની સપાટી સાથે અડકતું દેખાય તે રીતે નોંધવામાં આવે છે (આકૃતિ $2.14~\rm b$). આ વિસ્થાપનાભાસ (parallax) ભૂલો (અવલોકનકારના સ્થાનમાં ફેરફારને કારણે થતી ભૂલો) ટાળવામાં મદદ કરે છે. એ નોંધો કે જો પ્રવાહી બહિર્ગોળ સપાટી રચે અથવા દ્રાવણ રંગીન અને અપારદર્શક સપાટી હોય ઉદાહરણ તરીકે ${\rm KMnO_4}$ નું દ્રાવણ, ત્યારે વાંચન ઉપલી સપાટી સાથેની સપાટીનો આંક નોંધવામાં આવે છે. ફ્લાસ્ક અને પિપેટમાં ધારિતાની નિશાની સાધનના સાંકડા ભાગમાં નિરેખણ કરેલ હોય છે, જેથી સપાટીનું વાંચન કરવામાં ભૂલમાં ઘટાડો કરી શકાય. અંકિત નળાકાર પરિશુદ્ધ માપન માટે વપરાતા નથી. આથી તે સાંકડા હોવા જરૂરી નથી. બ્યુરેટ અને પિપેટ પ્રવાહીના કદ ચોકસાઈપૂર્વક માપવા માટે ઉપયોગી છે.

(a) અંકિત નળાકારનો ઉપયોગ કરવો (Using Graduated Cylinder)

હંમેશા સ્વચ્છ અંકિત નળાકાર (આકૃતિ 2.15) વાપરવો જોઈએ. કારણ કે અશુદ્ધિ માપન કરવાના પદાર્થને રાસાયણિક રીતે અશુદ્ધ કરે અને તે કદના ચોક્કસ માપનને અડચણ કરે. ગંદા વાસણો સારી રીતે નીતરતાં નથી અને તેથી માપાંકન કરેલું કદ મેળવી શકાતું નથી. અંકિત (measuring) નળાકાર 5 mL, 10 mL, 25 mL, 100 mL, 250 mL, 500 mL, 1000 mL અને 2000 mL ધારિતાના (capacity) પ્રાપ્ય હોય છે. અંકિત નળાકાર સામાન્ય રીતે વાંચન કરેલ હોય, તે કદના કરતાં થોડું વધારે કદ મળે છે. તે જયારે પ્રવાહીને બહાર લેવામાં આવે છે, ત્યારે દીવાલો પર, પ્રવાહીની ફિલ્મ (film) માટેની ક્ષતિપૂર્તિ છે.

(b) બ્યુરેટનો ઉપયોગ કરવો

બ્યુરેટ એક સાદી લાંબી અંકિત એકસરખા છિદ્રવાળી નળી હોય છે, જેના એક છેડે રોધની (stopcock) અથવા દબાવરોધની (pinch cock) હોય છે (આકૃતિ 2.16). તેનો ઉપયોગ જથ્થાત્મક (અનુમાપનીય) નિર્ધારણમાં થાય છે. બ્યુરેટના આંક પ્રવાહી લીધા પહેલાં અને પ્રવાહી લીધા પછી નોંધવામાં આવે છે. બન્ને આંક વચ્ચેનો તફાવત લીધેલા પ્રવાહીનું કદ થાય છે. પ્રવાહી ટીપે ટીપે લેવું જોઈએ. જો ઝડપથી પ્રવાહી લેવામાં આવે તો બ્યુરેટની અંદરની દીવાલ પર ચોંટેલું પ્રવાહી ઝડપથી નીચે આવે નહિ અને તેથી થોડું પ્રવાહી રહી જાય. આને લીધે આંક ભૂલ ભરેલો મળે. પ્રયોગશાળામાં સામાન્ય રીતે વપરાતી બ્યુરેટની માપન ધારિતા 50 mL હોય છે.

ઉપયોગમાં લેવાના પ્રવાહીને બ્યુરેટમાં ભરતાં પહેલાં બ્યુરેટમાં જે દ્રાવશ ભરવાનું છે તેના વડે વીંછળી નાંખો. વીંછળવા માટે પ્રવાહીનું થોડું કદ બ્યુરેટમાં લેવામાં આવે છે અને બ્યુરેટને ધીમે ધીમે ગોળ ગોળ ફેરવતાં અંદરની બધી જ સપાટીને ભીની કરવામાં આવે છે વીંછળી નાંખ્યા પછી બધુ પ્રવાહી બ્યુરેટના નાળયા (નોઝલ)માંથી નીતારી નાંખવામાં આવે છે (આકૃતિ 2.17).

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

આકૃતિ 2.17 : બ્યુરેટને વીંછળવી

વીંછળી નાંખ્યા પછી પ્રવાહીને ગળણીની મદદથી શૂન્ય આંકથી ઉપર સુધી ભરવામાં આવે છે. પછી રોધન ખોલવામાં આવે છે અને પ્રવાહીને નોઝલ મારફતે પસાર થવા દેવામાં આવે છે, જેથી તેમાં કોઈ હવાના પરપોટા રહી ન જાય (આકૃતિ 2.18).

આકૃતિ 2.18: બ્યુરેટને ભરવી

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

આકૃતિ 2.19 :(a) બ્યુરેટ પર પ્રતિલંબન કાર્ડ મૂકવું (b) સાચા વાંચન આંક માટે પ્રતિલંબન કાર્ડનો ઉપયોગ

બ્યુરેટમાં પ્રવાહીની સપાટી વાંચવા માટે અડધું કાળું કરેલું સફ્રેદ કાર્ડ જેને પ્રતિલંબન (antiparallax) કાર્ડ કહે છે. તેને બ્યુરેટમાંની વક્ર સપાટીએ બ્યુરેટની પાછળ ગોઠવો (આકૃતિ 2.19 a, b). આંખને બ્યુરેટમાંની વક્ર સપાટીને સમતલ રાખીને વાંચન કરવું, જેથી લંબન (parallax) ને કારણે થતી ક્ષતિ દૂર કરી શકાય. કાર્ડના કાળા ભાગને અડકતો બ્યુરેટનો આંક વાંચો (આકૃતિ 2.19 b). હંમેશા યાદ રાખો કે પારદર્શક દ્રાવણો માટે બ્યુરેટમાંની નીચેની વક્રસપાટીનો આંક વાંચવો. જો દ્રાવણ રંગીન હોય (ઉદાહરણ તરીકે પોટેશિયમ પરમેંગેનેટનું દ્રાવણ) તો બ્યુરેટમાંની ઉપરની વક્રસપાટીનો આંક વાંચવો. બ્યુરેટનો આંક વાંચતાં પહેલા બ્યુરેટ ઉપરની ગળણી લઈ લેવાનું ભૂલશો નહિ અને ખાત્રી કરો કે નોઝલ (નાળચું) સંપૂર્ણ ભરાયેલું છે. આંક નોંધતી વખતે ધ્યાન રાખો કે એક પણ ટીપું બ્યુરેટના નોઝલ (નાળચા) પર લટકતું નથી.

(c) પિપેટનો ઉપયોગ કરવો (Using Pipette)

સામાન્ય રીતે 1 mL, 2 mL, 5 mL, 10 mL, 20 mL, 25 mL વગેરે માપન ધારિતાવાળી પિપેટ વપરાય છે. પ્રયોગશાળામાં કાર્ય માટે અંકિત પિપેટ વાપરવામાં આવે છે (આકૃતિ 1.3).

પિપેટ (આકૃતિ 2.20 a) જ્યારે પ્રવાહીને ફ્લાસ્કમાં અથવા બીજા સાધનમાં લેવાનું હોય ત્યારે, પ્રવાહીના કદ માપવા માટે વપરાય છે. પ્રવાહીને પિપેટમાં મોં (mouth) વડે અથવા પિપેટ ફિલર બલ્બ અથવા પિપેટ ફિલર પંપ વડે ચુસવામાં આવે છે. પિપેટ ભરવા માટે પિપેટ ફિલર બલ્બ કે પિપેટ ફિલર પંપનો ઉપયોગ હંમેશા સુરક્ષિત હોય છે. જ્યારે ઝેરી અથવા દાહક દ્રાવણો લેવાના હોય ત્યારે મોં વડે કદી ચૂસશો નહિ. પિપેટ ફિલર બલ્બનો ઉપયોગ **પિપેટમાં દ્રાવણ ખેંચવા માટે કરશો.** પિપેટને એક હાથમાં મજબૂત રીતે પકડો અને પિપેટના છેડા (જેટ)ને જે દ્રાવણ પિપેટમાં લેવાનું છે, તેમાં ડૂબાડો અને બીજા હાથ વડે પિપેટના બલ્બને દબાવો (આકૃતિ 2.20 b). હવે તમારા બલ્બ પરના હાથને ઢીલો કરો જેથી પ્રવાહી પિપેટમાં ચૂસાશે. જ્યારે પ્રવાહી નિરેખણ કરેલી નિશાનીથી ઉપર આવી જાય ત્યારે બલ્બને દૂર કરો અને તમારા હાથની પ્રથમ આંગળીને તેના સ્થાને પિપેટ પકડી રાખીને મૂકો (આકૃતિ 2.20 c). આંગળીને થોડી ઢીલી કરો. જેથી વધારાનું પ્રવાહી વહી જાય અને નિરેખણ કરેલ નિશાની સુધી પ્રવાહીની વક્રસપાટી આવે. હવે આંગળીને દૂર કરો અને પ્રવાહીને ફ્લાસ્કમાં વહી જવા દો (આકૃતિ 2.20 d). પિપેટને ખાલી કર્યા પછી ફૂંક મારી પ્રવાહી લેશો નહિ. પિપેટની રચના એવી હોય છે કે વહી નહિ ગયેલું

પ્રવાહી ગણતરીમાં લેવાતું નથી (આકૃતિ 2.20 e).

સંપૂર્શ પ્રવાહી લીધા પછી મહત્તમ કદ લેવા માટે પિપેટને માત્ર પાત્રની બાજુ અથવા તળીયે અડાડો. જેમાં પ્રવાહી લેવામાં આવેલ છે (આકૃતિ 2.20 d).

પિપેટને હંમેશા જે દ્રાવશ માપવાનું છે, તેના વડે વીંછળો. આને માટે પિપેટમાં થોડા મિલિ દ્રાવશ ભરો અને પછી પિપેટને ગોળ ગોળ ઉપર નીચે ફેરવો (આકૃતિ 2.21). વીંછળ્યા પછી તેમાંનું બધું જ પ્રવાહી નોઝલ દ્વારા બહાર કાઢી નાંખો. હવે તે દ્રાવશના માપન માટે તૈયાર છે. પિપેટનો ઉપયોગ કરતી વખતે હાથ સૂકા હોવા જોઈએ. જેથી દબાશનું નિયંત્રશ સહેલાઈથી થઈ શકે. વળી નોઝલ તૂટી ગઈ હોય તેવી પિપેટનો પશ ઉપયોગ કરશો નહિ.

આકૃતિ 2.21 : પિપેટને વીંછળવી

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

આકૃતિ 2.22 : માપક ફ્લાસ્ક

(d) માપક ફલાસ્કનો ઉપયોગ કરવો (Using Measuring Flask)

આનો ઉપયોગ ચોક્કસ કદના દ્રાવણ બનાવવા માટે થાય છે. તેને અંકિત ફ્લાસ્ક અથવા કદમાપક ફ્લાસ્ક પણ કહે છે.

તેનો આકાર નાસપતી (pear) જેવો હોય છે અને લાંબી સાંકડી ગરદન ધરાવે છે તથા સપાટ તળીયું હોય છે (આકૃતિ 2.22). તેની ગરદન પર નિરેખણ કરેલ વર્તુળ, તે નિશ્ચિત તાપમાને ધારણ કરતાં કદનું સૂચન કરે છે.

તાપમાન અને ફ્લાસ્કની ધારિતા તે ફ્લાસ્ક ઉપર ચિહ્નિત કરેલા હોય છે. ગરદન પર કરેલા ચિહ્ન અંતિમ દ્રાવણ બનાવ્યા પછી વક્રસપાટી સાથે લંબનને કારણે થતી ભૂલ દૂર કરવામાં મદદરૂપ થાય છે. વક્રસપાટીનો નીચેનો છેડો અંકિત કરેલા ચિહ્નને સ્પર્શ રેખીય (tangential) રાખવો જોઈએ. અંતિમ કદ કરતી વખતે ચિહ્ન કરેલ વર્તુળના આગળના અને પાછળના ભાગ સીધી રેખામાં દેખાવા જોઈએ. ફ્લાસ્કની ગરદન નાની બનાવવામાં આવે છે કારણ કે છેલ્લે અંતિમ કદની ગોઠવણ વખતે થતી ભૂલને ઘટાડી શકાય. સાંકડી જગ્યામાં કદમાં થતો નાનો ફેરફાર પણ વક્રસપાટીની ઊંચાઈમાં વધુ અસર કરે છે.

માપક ફ્લાસ્ક જુદી જુદી ધારિતાના મળે છે. સામાન્ય રીતે પ્રાયોગિક કાર્ય દરમિયાન 50 mL, 100 mL અને 250 mL ધારિતાવાળા ફ્લાસ્ક વપરાય છે. માપક ફ્લાસ્કનો ઉપયોગ કરી દ્રાવણ બનાવવાની રીતનું વર્ણન આ એકમમાં આગળ ઉપર પ્રયોગ 2.1 માં કરેલ છે.

2.9 વજન કરવાની પદ્ધતિ (પ્રવિધિ) (Weighing Technique)

આકૃતિ 2.23 :વૈશ્લેષિક તુલા

(a) વૈશ્લેષિક તુલા (રાસાયણિક તુલા)નો પરિચય

રાસાયણિક તુલાની રચના અને કાર્યનો સિદ્ધાંત ભૌતિક તુલાના જેવા જ છે. જો કે તેની સૌથી ઊંચી સંવેદનશીલતાને કારણે તેની ચોકસાઈ વધારે છે. રાસાયણિક તુલાની મદદથી ચોકસાઈપૂર્વક દશાંશના ચાર સ્થળ સુધી વજન કરી શકાય છે. વૈશ્લેષિક તુલાથી પદાર્થના દળના ± 0.0002 g સુધીની ચોકસાઈથી વજન કરવા માટે વપરાય છે. તેને તુલાનો અલ્પતમ આંક (Least count) કહેવાય છે. બે તુલાપાત્ર (પલ્લાં) (pans) વાળા વૈશ્લેષિક રસાયણિક તુલાનું સંપૂર્ણ ચિત્ર આકૃતિ 2.23 માં દર્શાવેલ છે.

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

આ પ્રકારની તુલામાં બીમ (beam) કઠણ પણ હલકા વજનના પદાર્થમાંથી બનાવેલ હોય છે. તેના કેન્દ્રમાં ક્ષુરધાર (knife edge) પર ધુરાગ્ર (pivot) કરેલ હોય છે, જે ઘણા સખત પદાર્થ જેવા કે અગેટ (agate) અથવા કોરન્ડમમાંથી બનાવેલી પ્લેટ પર ગોઠવાયેલ હોય છે. છેડા પરના બે અગેટ ક્ષુરધાર મધ્યના ભાગથી સરખે અંતરે ગોઠવવામાં આવે છે અને આ દરેક એક નિલંબન (suspension) ને ટેકો આપે છે, જેને વિલોડન (stirrup) કહે છે. તેમાંથી તુલાપાત્રને લટકાવવામાં આવે છે. બીમના કેન્દ્રમાં એક તીક્ષ્ણદર્શક લગાડેલ હોય છે (આકૃતિ 2.24 a). દર્શક સ્કેલ જે સ્તંભ (pillar) ના તળીયે લગાડેલ હોય છે, તેના પર ફરે છે અને જયારે તુલા કાર્ય કરતું હોય, ત્યારે મધ્યસ્થિતિથી વિચલન દર્શાવે છે (આકૃતિ 2.24b). બીમની બન્ને બાજુએ બે ફેરવી શકાય તેવા સ્ક્રુ હોય છે, જે બીમને ક્ષૈતિજ સ્થિતિમાં ગોઠવવામાં ઉપયોગી છે. તુલાના પાયામાં ત્રણ સમતલન (levelling) સ્ક્રુ હોય છે. જે તુલાને ક્ષૈતિજ કરી શકે છે. મધ્ય સ્તંભની પાસે એક ઓળંબો રેખા લટકે છે, જે તુલાને ક્ષૈતિજ રાખવામાં મદદરૂપ થાય છે. તુલાનો ઉપયોગ કરવા માટે પાયાના કેન્દ્રમાં એક ગંડ (knob) હોય છે.

આકૃતિ 2.24 : (a) બીમને વળગી રહેલ દર્શક (b) દર્શકની હલચલ

(b) વિભાગી (Fractional) વજન અને આરોહી (Rider) નો સમાવેશ કરતી વજન પેટી (Weight box Including Fractional Weights and Riders)

રાસાયણિક તુલાની વજન પેટીમાં સામાન્ય રીતે નીચેના વજનોનો સમાવેશ થાય છે.

- (a) ગ્રામમાં વજન કરવા માટેનાં વજન (વજનનિયાં) : 100, 50, 20, 20, 10, 5, 2, 2, 1
- (b) મિલિગ્રામમાં વજન કરવા માટેનાં વજન (વજનિયાં) : 500, 200, 200, 100, 50, 20, 20, 10
- (c) આરોહી : 0.2 mg થી 10 mg સુધીનું વજન કરવા.

રાસાયશિક તુલામાં વજન કરવા માટે વપરાતાં વજનના ત્રશ પ્રકાર આકૃતિ 2.25 માં દર્શાવેલ છે. વજનિયાં બનાવવા માટે વપરાતા પદાર્થો આપેલ મુજબ છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

ગ્રામ વજનિયાં : કોપર અને નિકલમાંથી બનાવેલા હોય છે અને ક્રોમિયમનું વિલેપન (coating) કરેલું હોય અથવા ન પણ હોય.

મિલિગ્રામ વજનિયાં : એલ્યુમિનિયમ / જર્મન સિલ્વર / સ્ટેનલેસ સ્ટીલના બનાવેલા હોય છે.

આરોહી : 10.0 mg વજનવાળુ તારનું ગૂંચળું (લૂપ) એલ્યુમિનિયમ અથવા પ્લેટિનમ (loop) માંથી બનાવેલ હોય છે.

આકૃતિ 2.25 : (a) વજન પેટી (b) વિભાગી વજન (c) આરોહી (d) ચીપિયો

(c) રાસાયણિક તુલાને ગોઠવવું અને વજન કરવું. જરૂરી સામગ્રી

પધ્ધતિ

રાસાયણિક તુલાનો ઉપયોગ કરતી વખતે નીચેના તબક્કા અનુસરાય છે.

- (i) સમતલન સ્ક્રુ અને ઓળંબાની મદદથી તુલાને સમતલ કરો.
- (ii) ખાતરી કરો કે બીમ ક્ષૈતિજ છે. બીમની બન્ને બાજુએ આપેલા સ્ક્રુની મદદ વડે દર્શકને એવી રીતે ગોઠવો કે તે શૂન્ય બિંદુ પર રહે. જો તે બરોબર ગોઠવાયું હશે, તો તેને મુક્ત કરતાં દર્શક પાયાના સ્કેલના શૂન્યની બન્ને બાજુઓ પર સરખા કાપા ફરશે.

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

- (iii) ડાબી બાજુના તુલાપાત્રમાં વૉચ ગ્લાસ / વજન બોટલ જેમાં વજન કરવાનો પદાર્થ રાખવામાં આવે છે, તેને મૂકવામાં આવે છે. જમણી બાજુના તુલાપાત્રમાં ચીપિયાની મદદ વડે વજન પેટીમાંથી અંદાજિત વજન મૂકો.
- (iv) બીમ (નિરોધક એરેસ્ટ)ને મુક્ત કરો અને સ્કેલ પર દર્શકની હલચલ નોંધો. જો વજન યોગ્ય નહિ હોય, તો દર્શક વધુ હલકી બાજુ તરફ ખસશે. પાયા પાસેના દંડની મદદથી બીમને રોકીને તુલાપાત્રને સ્થિર સ્થિતિમાં વધારે વજન મૂકીને, વજન કાઢીને ગોઠવો. જ્યારે બન્ને તુલાપાત્રમાં વજન સરખા થશે, ત્યારે દર્શક પાયાના સ્કેલના શૂન્યની બન્ને બાજુ સરખા કાપા ફરશે.
- (v) 10 mgથી નીચેના વજનને ગોઠવવા માટે આરોહીનો (રાઈડર) ઉપયોગ કરો.

3 4 5 6

આકૃતિ 2.26 : તુલાબીમના ખાંચા પર આધારિત આરોહી

આરોહીનો ઉપયોગ

આરોહીની મદદથી મહત્તમ વજન કરી શકાય. તેનું વજન 10 mg હોય છે. આરોહીનું પોતાનું વજન જ 10 mg (0.01g) હોય છે. તેને સહેલાઈથી તુલાબીમ પરના ખાંચામાં ગોઠવી શકાય છે (આકૃત્તિ 2.26). જયારે તેને અંતિમ સ્થાન પર ગોઠવવામાં આવે, જયાં 10 નું નિશાન છે. તેનું વજન 10 mg (એટલે કે 0.01g) થશે. આરોહીનો ઉપયોગ કરીને આઘૂર્શ (moment) નો સિદ્ધાંત લાગુ પાડવામાં આવે છે. વજન બીમના કેન્દ્રથી લંબાઈ અને આરોહીના વજનનો ગુણાકાર બરાબર થાય છે. કેન્દ્રથી બીમની એક તરફની લંબાઈને એકમ લંબાઈ તરીકે લેવામાં આવે છે.

કેન્દ્રથી બન્ને બાજુએ તુલાબીમ સરખા અંતરે દસ સરખા ભાગમાં વિભાજત કરેલા હોય છે, જે બીમના 1/10 લંબાઈને અનુરૂપ થાય છે. આથી દરેક મોટું વિભાજન $\frac{1}{10}\times0.01=0.001\,\mathrm{g}$ અથવા $1~\mathrm{mg}$ વજન બરાબર થાય છે. દરેક મોટા વિભાજનને બીમ પાંચ ભાગમાં વિભાજત કરેલ હોય છે. દરેક નાનો વિભાજત ભાગ માત્ર 1/5 મિલિગ્રામને અનુરૂપ થાય છે, એટલે $0.2~\mathrm{mg}$ અથવા $0.0002~\mathrm{g}$. આમ, આરોહી $4.2~\mathrm{g}$ શક્ત પર ગોઠવેલ હોય તો વજન બરાબર $0.0044~\mathrm{g}$ થશે

(એટલે કે $4 \times 0.001 + 2 \times 0.0002 = 0.0044$ g) (આકૃતિ 2.26).

સાવચેતી

0

- (a) વજન કરતાં પહેલાં અને પછી તુલાપાત્રને યોગ્ય રીતે સાફ કરો. વજન કરવા માટે રસાયણને કદી પણ તુલાપાત્રમાં સીધું જ મૂકશો નહિ.
- (b) બીમને ધીમેથી મુક્ત કરો.
- (c) તુલામાં વધુ વજનને ટાળો.
- (d) વજનને એક જગ્યાએથી બીજી જગ્યાએ ફેરવવા માટે ચીપિયાની મદદ લો.
- (e) વજનને ક્ષારણને લીધે ખરાબ થઈ જવા દેશો નહિ.
- (f) તુલા પર કદી પણ ઠંડા / ગરમ પદાર્થનું વજન કરશો નહિ.
- (g) વજન હંમેશા તુલાના જમણા તુલાપાત્રમાં રાખો અને પદાર્થોને ડાબા તુલાપાત્રમાં રાખો (જો તમે જમોડી માણસ હો તો).

33

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

- (h) હંમેશા વજન કરતાં પહેલાં તુલામાં જરૂરી ગોઠવણ કરશો.
- (i) વજનને કાઢવા કે મૂકવા માટે અને પદાર્થને તુલાપાત્રમાં મૂકવા માટે હંમેશા બાજુના દરવાજાનો ઉપયોગ કરો. આગળના બારણા (શટર) નો કદી ઉપયોગ કરશો નહિ.
- (j) જ્યારે બીમના એરેસ્ટને મુક્ત કરો ત્યારે દરવાજા બંધ રાખવા અને સ્કેલ પર દર્શકની હલચલ જોવી.

ચર્ચાત્મક - પ્રશ્નો

- (i) રાસાયશિક તુલા ભૌતિક તુલા કરતાં કઈ રીતે જુદું છે ?
- (ii) આરોહીનો (રાઈડર) ઉપયોગ કરી વજન કરવામાં કયો સિદ્ધાંત સમાયેલો છે ?
- (iii) રાસાયણિક તુલા પર કેટલું મહત્તમ વજન કરી શકાય ?
- (iv) કયા વજનોને વિભાગી વજનો કહે છે ?
- (v) વજન લેવા મૂકવા માટે શા માટે હંમેશા ચીપિયાનો ઉપયોગ કરવો જોઈએ ?
- (vi) આરોહી બીમની ડાબી બાજુ 3.4 આંક પર ગોઠવાયેલ છે. જ્યારે વજન જમણી બાજુ મૂકવામાં આવ્યા હોય, ત્યારે વજન કરવા લીધેલ પદાર્થના વજનમાં તેનો શું ફાળો હશે ?
- (vii) તમે રાસાયશિક તુલાનો ઉપયોગ કરી 0.0023 g વજન કરી શકો ? તમારા જવાબ માટે કારણ આપો.

પ્રયોગ 2.1

હેતુ

ઑકઝેલિક ઍસિડનું 250 mL 0.1 M પ્રમાણિત દ્રાવણ* બનાવવું.

સિદ્ધાંત

ચોક્કસ રીતે જાણીતી સાંદ્રતાવાળા દ્રાવણને પ્રમાણિત દ્રાવણ કહે છે. પ્રમાણિત દ્રાવણની સાંદ્રતા દર્શાવવા માટે જુદી જુદી રીતો છે. ઍસિડ / બેઈઝનાં પ્રમાણિત દ્રાવણનો ઉપયોગ કરીને બેઈઝના / ઍસિડ દ્રાવણની અજ્ઞાત સાંદ્રતાને નક્કી કરી શકીએ છીએ. ઉદાહરણ તરીકે, ઑકઝેલિક ઍસિડના પ્રમાણિત દ્રાવણનો ઉપયોગ કરી આલ્કલી દ્રાવણની અજ્ઞાત સાંદ્રતા નક્કી કરી શકીએ છીએ. પ્રમાણિત દ્રાવણની સાંદ્રતા સામાન્ય રીતે મોલ પ્રતિ લિટરમાં દર્શાવાય છે. જળયુક્ત સ્ફટિકમય ઑકઝેલિક ઍસિડનું સૂત્ર COOH

 1 . $^{2}{
m H_{2}O}$ છે અને તેનું આણ્વીય દળ 126 g છે. જો ઑકઝેલિક COOH

^{*} પ્રમાશિત દ્રાવશ વિશે એકમ 6માં વધુ શીખશો.

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

ઍસિડના 126 g એક લિટર દ્રાવણમાં હોય તો તેને એક મોલર (1 M) દ્રાવણ કહે છે. એક લિટર 0.1 M ઑકઝેલિક ઍસિડ દ્રાવણ બનાવવા માટે આપણને $\frac{126}{10} = 12.6 \text{ g}$ જળયુક્ત ઑકઝેલિક ઍસિડની જરૂર પડે. આથી $250 \text{ mL} \ 0.1 \text{ M}$ ઑકઝેલિક ઍસિડ દ્રાવણ બનાવવા માટે આપણને જરૂર પડશે.

$$\frac{12.6\,\mathrm{g} \times 250\,\mathrm{mL}}{1000\,\mathrm{mL}}$$
 = $3.1500\,\mathrm{g}$ જળયુક્ત(સજળ) ઑકઝેલિક ઍસિડ

સામાન્યત : જરૂરી મોલારિટીવાળું દ્રાવણ બનાવવા માટે વજન કરવાના પદાર્થની ગણતરી નીચે આપેલ સૂત્રની મદદથી કરી શકીએ.

જરૂરી સામગ્રી

• માપક ફલાસ્ક (250 mL) : એક

• ગળણી : એક

• વજન કરવાની નળી / વૉચ ગ્લાસ : એક

• વૉશ બોટલ : એક

• લોખંડનું સ્ટેન્ડ ગોળ કલેમ્પ સાથે : એક

• ઑકઝેલિક ઍસિડ : જરૂર પ્રમાણે

પધ્ધતિ

- (i) ખાલી, સાફ અને સૂકો કરેલો વૉચ ગ્લાસ / વજન કરવાની નળીનું ચોકસાઈપૂર્વક વજન કરો (વજન 1).
- (ii) 3.1500 g ઑકઝેલિક ઍસિડનું વૉચ ગ્લાસમાં / વજન કરવાની નળીમાં મૂકી વજન કરો (વજન 2). વજન હંમેશા દશાંશના ચાર સ્થળ સુધી કરો અને તુલાને રસાયણનું વજન કર્યા પહેલાં અને પછી સાફ કરો.
- (iii) ગળણીનો ઉપયોગ કરીને વૉચ ગ્લાસ / વજન કરવાની નળીમાંનો ઑકઝેલિક ઍિસડ સાવચેતીપૂર્વક માપક ફ્લાસ્કમાં લો. ખાલી વૉચ ગ્લાસનું ફરી વજન કરો (વજન 3) અને આ વજન (વજન 3) અને વૉચ ગ્લાસ અને ઑકઝેલિક ઍિસડના સંયુક્ત વજન (વજન 2) માંથી બાદ કરી માપક ફ્લાસ્કમાં લીધેલા ઑકઝેલિક ઍિસડનું વજન મેળવો. આ દળથી દ્રાવણની ચોક્કસ મોલારિટી ગણો. ગળણી વારંવાર નિસ્યંદિત પાણી વડે વૉશ બોટલની મદદથી ધુઓ અને ચોંટી રહેલા કણોને માપક ફ્લાસ્કમાં લઈ લો. ગળણીને ધોતી વખતે પાણીનું ઓછું પ્રમાણ લો. જેથી માપક ફ્લાસ્કના કદના 1/4 ભાગ કરતાં વધારે કદ થાય નહિ (આકૃતિ 2.27 a, b).

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

(iv) માપક ફ્લાસ્કને ઘુમાવો જેથી ઘન ઑકઝેલિક ઍસિડ સંપૂર્ણપણે ઓગળી જાય. વધારે પાણી ફ્લાસ્કને હલાવતા જઈ ઉમેરો. વધુ નિસ્યંદિત પાણી ઉમેરીને, નિરેખણ કરેલ ચિહ્ન સુધી કદ બનાવો. છેલ્લા તબકકામાં નિસ્યંદિત પાણી ટીપે ટીપે ઉમેરો. ફ્લાસ્કને બૂચ લગાવો અને દ્રાવણને હલાવો જેથી દ્રાવણ બધે જ એકસરખું બને (આકૃતિ 2.27 c, d). તેના પર 0.1 M ઑકઝેલિક ઍસિડ દ્રાવણ એવું લેબલ લગાવો.

આકૃતિ 2.27 : પ્રમાણિત દ્રાવણ બનાવવું

- (a) ઑકઝેલિક ઍસિડનું સ્થાનાંતરણ
- (c) છેલ્લા કેટલાક mL ને ટીપે ટીપે ઉમેરવા.
- (b) દ્રાવણનું મંદન કરવું.
- (d) પ્રમાણિત દ્રાવણ

સાવચેતી

- (a) તુલાના તુલાપાત્રને ઉપયોગ પહેલાં અને પછી સાફ કરશો.
- (b) વજનને કદીપણ હાથથી અડકશો નહિ. વજનને વજનપેટીમાંથી તુલાપાત્રમાં લેવા મૂકવા માટે, ચીપિયાનો ઉપયોગ કરો.
- (c) બોટલમાંથી પ્રક્રિયકને વૉચ ગ્લાસ પર મૂકવા માટે હંમેશા ચમચાનો ઉપયોગ કરો.
- (d) પદાર્થ લઈ લીધા પછી, તરત જ પ્રક્રિયક બોટલનો બૂચ બંધ કરી દો.
- (e) પ્રમાશિત દ્રાવશ બનાવવા માટે હંમેશા નિસ્યંદિત પાશીનો ઉપયોગ કરશો.
- (f) પદાર્થનું વજન કરતાં પહેલાં તુલાની ગોઠવણીની હંમેશા ખાતરી કરો.
- (g) રસાયશોના વજન કરતી વખતે કાળજી રાખશો. તુલાની સપાટી ઉપર કોઈ રસાયશ ઢોળાય નહિ તેનું ધ્યાન રાખશો.
- (h) વૉચ ગ્લાસ / વજન કરવાની નળી અને ગળશીને દરેક વખતે થોડું નિસ્યંદિત પાશી લઈને વારંવાર ધુઓ.
- (i) દ્રાવણ બનાવતી વખતે પાણી સાવચેતીપૂર્વક ઉમેરવું જોઈએ. જેથી વક્રસપાટીનો ભાગ માપક ફ્લાસ્કના નિરેખણ કરેલા ચિહ્નને અડકે.
- (j) દ્રાવણના એકસરખા સંઘટનની ખાતરી માટે ફ્લાસ્કના બૂચને બંધ કરો અને દ્રાવણને સાવચેતીપૂર્વક અને સારી રીતે હલાવો.

પાયાની પ્રયોગશાળા પ્રવિધિઓ (તકનીકો)

- જલીય ઑકઝેલિક ઍસિડ અને નિર્જલીય ઑકઝેલિક ઍસિડના સૂત્રો અને બેઝિકતા શું છે ? (i)
- મોલર દ્રાવણ એટલે તમે શું સમજો છો ? (ii)
- પ્રમાશિત દ્રાવશો હંમેશા શા માટે કદ માપક ફ્લાસ્કમાં જ બનાવવામાં આવે છે ? (iii)
- તમે કેવી રીતે 250 mL 0.05 M ઑકઝેલિક ઍસિડનું દ્રાવણ બનાવશો ? (iv)
- ઘન NaOH નો ઉપયોગ પ્રમાશિત દ્રાવણ બનાવવામાં કરી શકાય ? (v)
- પ્રમાશિત દ્રાવશ બનાવવા માટે કયા પ્રકારનો પદાર્થ વપરાય છે ? (vi)
- 'સ્થાનાંતરણ (transfer) વડે વજન કરવું' નો શું અર્થ થાય છે ? તે ક્યારે ઉપયોગ લેવાય છે ? (vii)

એકમ-3 શુધ્ધીકરણ અને શુધ્ધતાના અભિલક્ષણો (Purification and Criteria of Purity)

સંયોજનની ઓળખ માટે શુધ્ધ પદાર્થનું ગુણાત્મક પૃથક્કરણ જરૂરી છે. આથી આપણે પહેલાં પદાર્થને શુધ્ધ કરવો પડે છે અને પછી તેની શુધ્ધતા ચકાસવાની હોય છે. સંયોજનના શુધ્ધીકરણ માટે ઘણી પ્રવિધિઓ જેમ કે સ્ફ્રટિકીકરણ, નિસ્યંદન, ઉર્ઘ્વીકરણ, ક્રોમેટોગ્રાફી વગેરે પ્રાપ્ય છે. આ એકમમાં તમે સંયોજનના શુધ્ધીકરણ માટેની પ્રવિધિ તરીકે સ્ફટિકીકરણનો અભ્યાસ કરશો. સંયોજનની શુધ્ધતા તેનું ગલનબિંદુ અથવા ઉત્કલનબિંદુ માપીને નક્કી કરી શકાય છે. ગલનબિંદુ અને ઉત્કલનબિંદુ નક્કી કરવાની પ્રવિધિ આ એકમમાં વર્શવી છે. શુધ્ધ ઘન અને પ્રવાહી સંયોજન અનુક્રમે ચોક્કસ ગલનબિંદુ અને ઉત્કલનબિંદુ ધરાવે છે. તેથી સંયોજનના ગલનબિંદુ અને ઉત્કલનબિંદુ શુધ્ધતાના અભિલક્ષણ તરીકે વાપરી શકાય.

પ્રયોગ 3.1

હેતુ

નીચેનામાંથી ગમે તે એકના નમૂનાનું સ્ફટિકીકરણ વડે શુધ્ધીકરણઃ પોટાશ એલમ, કોપર સલ્ફેટ અથવા બેન્ઝોઈક ઍસિડ.

સિધ્ધાંત

સ્ફટિકીકરણ અશુધ્ધ પદાર્થના શુધ્ધીકરણ માટેની પ્રવિધિઓમાંની એક પ્રવિધિ છે. ખાસ કરીને જ્યારે મૂળ કાચો (crude) પદાર્થ ઘણી અશુધ્ધ પરિસ્થિતિમાં કરેલી પ્રક્રિયાથી મેળવાયેલો હોય. આ પ્રક્રિયાના પ્રથમ તબક્કામાં એક જ દ્રાવક અથવા દ્રાવકોના મિશ્રણની પસંદગીનો સમાવેશ થાય છે, જે કાચા પદાર્થને ગરમ કરતાં ઝડપથી ઓગાળે છે અને ઠંડું હોય, ત્યારે બહુ ઓછા, પ્રમાણમાં ઓગળતું હોય છે. કાચા પદાર્થને ઉકળતા દ્રાવકના ઓછામાં ઓછા જથ્થામાં ઓગાળી તેનું સંતૃપ્ત દ્રાવણ મેળવવામાં આવે છે. ગરમ દ્રાવશનું ગાળશ કરીને અદ્રાવ્ય અશુધ્ધિઓ દૂર કરવામાં આવે છે. ત્યારબાદ તેને ધીમેથી ઠંડુ પાડવામાં આવે છે. જેથી દ્રાવ્ય સ્ફટિકીકરણ પામે છે અને અશુધ્ધિઓનું મોટું પ્રમાણ દ્રાવણમાં રહી જાય છે. મળેલ સ્કટિકનો જથ્થો (ફસલ) (crop) ગાળણથી એકઠો કરવામાં આવે છે અને આ પ્રક્રિયાનું પુનરાવર્તન જ્યાં સુધી શુધ્ધ પદાર્થના સ્ફટિક મળે નહિ, ત્યાં સુધી કરવામાં આવે છે. ઘણી વખત ઠંડુ કરતી વખતે પદાર્થનો (પદાર્થ જેનું શુધ્ધીકરણ કરીએ છીએ તે) જથ્થો દ્રાવણમાં ઉમેરવામાં આવે છે. જેથી સ્ફટિકીકરણની શરૂઆતને અનુ<u>ક</u>ળતા પ્રાપ્ત થાય છે. આને **બીજાયન (seeding)** કહે છે. ઉમેરેલા નાના સ્ફટિક નવા સ્ફટિકની વૃધ્ધિ માટે કેન્દ્ર તરીકે વર્તે છે. સ્ફટિકની વૃધ્ધિ સ્ફટિકીકરણ કરતી વખતની પરિસ્થિતિ પર આધાર રાખે છે. સારા સ્ફટિક મેળવવા માટે ઝડપથી ઠંડુ પાડવાનું ટાળવું જોઈએ, કારણ કે તે નાના અને વિકૃત સ્ફટિકમાં પરિણમે છે. ઘણીવાર સ્ફટિકની શુધ્ધતા સ્ફટિકના રંગ પરથી નક્કી થાય છે. ઉદાહરણ તરીકે ફટકડી,

કોપર સલ્ફેટ અને બેન્ઝોઈક ઍસિડના શુધ્ધ સ્ફટિક અનુક્રમે સફેદ, વાદળી અને સફેદ

શુધ્ધીકરણ અને શુધ્ધતાના અભિલક્ષણો

રંગના હોય છે. અશુધ્ધિઓ સ્ફટિકને રંગ આપે છે. આથી અશુધ્ધ સ્ફટિકના રંગ શુધ્ધ સ્ફટિક કરતાં અલગ હોય છે.

જરૂરી સામગ્રી

- બીકર (250 mL) : એક
- કાચની ગળણી : એક
- ત્રિપાઈ સ્ટેન્ડ : એક
- પોર્સેલિન ડીશ : એકકાચનો સળિયો : એક
- રેત ઉષ્મક : એક

પોટાશ એલમ કોપર સલ્ફેટ અને

બેન્ઝોઈક ઍસિડ : જરૂર પ્રમાણે

પધ્ધતિ

- (ii) આ રીતે બનાવેલ સંતૃપ્ત દ્રાવશને ગાળી લો અને ગાળશને પોર્સેલીન ડીશમાં લઈ લો. તેને રેત-ઉષ્મક પર ગરમ કરો જેથી દ્રાવકના 3/4 ભાગનું બાષ્પીભવન થઈ જાય. દ્રાવશમાં કાચનો સળીયો ડૂબાડો, તેને બહાર કાઢો અને મોં વડે હવાની ફૂંક મારી શુષ્ક બનાવો. જો સળીયા પર ઘન પડ રચાય, તો ગરમ કરવાનું બંધ કરો.
- (iii) પોર્સેલિન ડીશને વૉચ ગ્લાસ વડે ઢાંકી દો અને ડીશમાંના પદાર્થને ખલેલ પહોંચાડ્યા વગર ઠંડુ પડવા માટે મૂકી દો.
- (iv) જ્યારે સ્કટિકની રચના થઈ જાય, ત્યારે માતૃદ્રાવણ (mother liquor) ને (સ્કટિકીકરણ પછી વધેલું દ્રાવણ) નિતારીને દૂર કરો.
- (v) પોટાશ એલમ અને કોપર સલ્ફેટના સ્ફટિકને પ્રથમ થોડું પાણી ધરાવતા આલ્કોહોલના ઘણા થોડા પ્રમાણથી ધુઓ. જેથી ચોંટી રહેલું માતૃદ્રવ નીકળી જશે અને ત્યારબાદ આલ્કોહૉલથી ધુઓ જેથી ભેજ દૂર થશે. બેન્ઝોઈક ઍસિડના સ્ફટિકને ઠંડા પાણીથી ધુઓ. બેન્ઝોઈક ઍસિડ આલ્કોહૉલમાં દ્રાવ્ય છે, આથી તેના સ્ફટિકને ધોવા આલ્કોહૉલ વાપરશો નહિ.
- (vi) ગાળણ પત્રના પડ વચ્ચે સ્ફટિકને સૂકવો.
- (vii) આ રીતે મળેલા સૂકા સ્ફટિકને સલામત અને સૂકી જગ્યા પર એકઠાં કરો.
- (vii) શુધ્ધ પદાર્થનું મહત્તમ પ્રમાણ (જથ્થો) મેળવવા માટે તબક્કા (ii vii) નું પુનરાવર્તન કરો.

સાવચેતી

- (a) દ્રાવણને સાંદ્ર કરતી વખતે બધા જ દ્રાવકનું બાષ્પીભવન ન કરશો.
- (b) દ્રાવણ ઠંડુ પડતું હોય, ત્યારે તેને ખલેલ પહોંચાડશો નહિ.
- (c) ધોવાના પ્રવાહીને એક જ હપતામાં (જથ્થામાં) વાપરવાના બદલે 3-4 નાના હપતા (જથ્થા)માં ઉપયોગ કરો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

- (i) નીચેનામાંથી કયું પોટાશ એલમ (ફટકડી)નું સાચું સૂત્ર છે ?
 - (a) $K^+(H_2O)_6Al^{3+}(H_2O)_6(SO_4^{2-})_2$
 - (b) $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$
- (ii) સમાકૃતિક (Isomorphous) સંયોજનો શું છે ?
- (iii) 'સ્ફટિકીકરણ જળ' પર્યાયનો શું અર્થ થાય છે ?
- (iv) તમે બનાવેલા દરેક પ્રકારના સ્ફટિકને ખૂબ જ ગરમ કરવાથી શું અસર થશે તે વર્ણવો.
- (v) 'માતૃદ્રાવશ' પર્યાયથી તમે શું સમજો છો ?
- (vi) સ્ફટિકીકરણની પ્રક્રિયાને કયું ઉષ્માગતિકીય પરિબળ તરફેણ કરે છે ?
- (vii) 'સંતૃપ્ત દ્રાવણ' પર્યાય સમજાવો.
- (viii) સ્ફટિક બનાવવા માટે સંતૃપ્ત દ્રાવણ બનાવવું શા માટે જરૂરી છે ?
- (ix) સ્ફટિકીકરણમાં સમાવિષ્ટ પ્રક્રમનું નામ આપો.
- (x) કિપ્સ કચરો શું છે ? કિપ્સ કચરામાંથી આપણે કેવી રીતે ફેરસ સલ્ફેટના સ્ફટિક મેળવી શકીએ ?

પ્રયોગ 3.2

હેતુ

ઘન કાર્બનિક સંયોજનનું ગલનબિંદુ નક્કી કરવું.

સિધ્ધાંત

પદાર્થને ગરમ કરતાં તેના અશુઓની ગતિજ ઊર્જા વધે છે, જ્યારે તે એટલી બધી વધી જાય છે કે અશુઓ વચ્ચેના આકર્ષણ બળોની ઉપરવટ થઈ જાય છે, ત્યારે ઘનની લેટિસ રચના તૂટી જાય છે, ઘન પીગળે છે અને પ્રવાહી અવસ્થામાં આવે છે. પદાર્થનું ગલનબિંદુ એ તાપમાન છે, જે તાપમાને પદાર્થની ઘન અવસ્થા બદલાવા માંડે છે અને પ્રવાહી અવસ્થામાં ફેરવાય છે, અને ત્યારે દબાણ એક વાતાવરણ હોય છે.

એક

શુધ્ધીકરણ અને શુધ્ધતાના અભિલક્ષણો

જરૂરી સામગ્રી

થીલેની નળી

/ જેલ્ડહાલ ફ્લાસ્ક / બીકર : એક

થર્મામીટર

• કેશનળી : જરૂર પ્રમાણે

કલેમ્પ સાથેનું લોખંડનું સ્ટેન્ડ : એક

• પ્રવાહી પેરેફ્રીન

/ સાંદ્ર H₂SO₄ : જરૂર પ્રમાણે

કાર્બનિક પદાર્થ (નેપ્યેલીન)

p- ડાયકલોરોબેન્ઝિન

p-ટોલ્યુડિન : જરૂર પ્રમાણે

પધ્ધતિ

- (iii) કેશનળીને પ્રવાહી પેરેફ્રીન વડે ભીની કરો અને થર્મોમીટર સાથે ચોંટાડી દો. તે થર્મોમીટર સાથે સસંજક (cohesive) બળથી ચોંટી રહેશે. ધ્યાન રાખો કે, કેશનળીનો નીચેનો છેડો અને થર્મોમીટરનો બલ્બ એક જ સપાટીએ છે. થર્મોમીટરને રબરના બૂચમાં ફીટ કરેલ હોય છે. જેની બાજુમાં એક ખાંચો હોય છે, જેથી હવા અને બાષ્ય નીકળી જાય.
- (iv) થીલેની નળી (આકૃતિ 3.1 a) લો અને તેને 50 થી 60 mL પ્રવાહી પેરેફીન વડે ભરો, જેથી તે થીલેની નળીના વળાંકવાળા ભાગની ઉપર જાય. થીલેની નળીના સ્થાને જેલ્ડહાલ ફલાસ્ક વાપરી શકાય.
- (v) કેશનળી સાથેના થર્મોમીટરને પ્રવાહી પેરેફીનમાં ડૂબાડો અને રબરના બૂચને એવી રીતે ગોઠવો કે જેથી કેશનળીમાં ભરેલો પદાર્થ અને થર્મોમીટરનો બલ્બ સંપૂર્ણપણે પ્રવાહી પેરેફીનમાં ડૂબેલા રહે અને કેશનળીનો ખુલ્લો ભાગ આકૃતિ 3.1 a માં દર્શાવ્યા પ્રમાણે હવામાં રાખો. થર્મોમીટર અને કેશનળી થીલેની નળીની બાજુને અડકવા જોઈએ નહિ.
- (vi) હવે થીલેની નળીના બાજુના ભાગને (arm) ધીમી જ્યોતમાં કેશનળીની સામેની બાજુએથી ગરમ કરો અને જે તાપમાને ઘન પીગળવાનું શરૂ કરે ત્યારે તાપમાન નોંધો.

p-ડાયકલોરોબેન્ઝીન

p-ટોલ્યુડિન

નેપ્થેલીન

જોખમ અંગે ચેતવણી

 આ રસાયણનો આંખ અને ચામડી સાથે સંપર્ક ટાળો તથા તેની બાષ્પ શ્વાસમાં લેશો નહિ.

આકૃતિ 3.1 (a) : થીલેની નળીનો ઉપયોગ કરીને ગલનબિંદુ નક્કી કરવું

આકૃતિ 3.1 (b) : ગલનબિંદુ નક્કી કરવામાં વપરાતા જુદા જુદા સાધનો

આ તાપમાન ઘનનું ગલનબિંદુ છે. જો તમે જેલ્ડહાલ ફ્લાસ્ક લીધો હોય, તો ફ્લાસ્કના તળીયાને ફરતા બર્નરની જયોતને ફેરવતા રહો, જેથી એકસરખી રીતે ગરમ થાય. આને માટે તમારા – હાથમાં બર્નરને રાખો અને ફ્લાસ્કની નીચે જયારે ગરમ કરો ત્યારે રેત – ઉષ્મક રાખો. તે અકસ્માતના સંજોગોમાં ઍસિડના ઢોળાઈ જવાથી બચાવશે. બીજા ઘન સાથે પ્રયોગનું પુનરાવર્તન કરો.

શુધ્ધીકરણ અને શુધ્ધતાના અભિલક્ષણો

() () ()

સાવચેતી

- (a) કેશનળીનો નીચેનો છેડો અને થર્મોમીટરને એકસરખી સપાટીએ રાખો.
- (b) કેશનળી બહુ જાડી ન હોવી જોઈએ.
- (c) પાઉડરનું પેકિંગ તેમાંના ઘન કશો વચ્ચે હવાનાં પોલાશ ન રહે તેવું એકસરખું હોવું જોઈએ.
- (d) થીલેની નળીને ધીમી જ્યોત વડે બાજુના ભાગ (arm) થી ગરમ કરવી.
- (e) થીલેની નળીનો અથવા જેલ્ડહાલ ફ્લાસ્કનો બૂચ જેમાંથી થર્મોમીટર પસાર થાય છે તેમાં બાજુમાં ખાંચો હોવો જોઈએ. જેથી ગરમ કરવા દરમિયાન ઉત્પન્ન થતી બાષ્પ બહાર નીકળી જાય અને નળી અથવા ફ્લાસ્કના ફાટવાથી બચી શકાય.
- (f) કદી પણ જેલ્ડહાલ ફ્લાસ્કના બલ્બને અડધાથી વધારે ભરશો નહિ.

નોંધ : પેરેફીન સાવચેતી સાથે 220 $^{\circ}$ C તાપમાન સુધી ગરમ કરી શકાય છે. આથી આ તાપમાનથી વધારે ગલનબિંદુ ધરાવતા પદાર્થોને સાંદ્ર $\mathrm{H_{2}SO_{4}}$ માં ગરમ કરવામાં આવે છે. જેથી 280 $^{\circ}$ C સુધી ગરમ કરી શકાય છે. સલ્ફયુરિક ઍસિડનો ઉપયોગ સૂચવેલ છે પણ ભલામણ કરેલ નથી. સિલિકોન ઓઈલ ખૂબ જ સંતોષકારક પ્રવાહી છે અને સલ્ફયુરિક ઍસિડના સ્થાને વાપરી શકાય છે.

ચર્ચાત્મક-પ્રશ્નો

- (i) શુધ્ધ ઘન શા માટે ચોક્કસ ગલનબિંદુ ધરાવે છે ?
- (ii) ઘનના ગલનબિંદુ પર અશુધ્ધિઓની શું અસર પડે છે ?
- (iii) બેન્ઝામાઈડનું ગલનબિંદુ એસિટામાઈડ કરતાં શા માટે વધારે છે ?
- (iv) ગલનબિંદુ નક્કી કરવા માટે પ્રવાહી પેરેફીનના સ્થાને બીજું કોઈ પ્રવાહી વાપરી શકાય ?
- (v) આપણે ગલનબિંદુ નક્કી કરવા માટે કેશનળીને સીધી જ ગરમ કરી શકીએ ?
- (vi) થીલેની નળી અથવા જેલ્ડહાલના ફ્લાસ્કમાં પ્રવાહી પેરેફીન શા માટે ભરવામાં આવે છે ?
- (vii) શા માટે થીલેની નળીના બાજુના ભાગ (arm) ને ગરમ કરવામાં આવે છે ?

પ્રયોગ 3.3

હેતુ

પ્રવાહી કાર્બનિક સંયોજનનું ઉત્કલનબિંદુ નક્કી કરવું.

સિધ્ધાંત

પ્રવાહીનું ઉત્કલનબિંદુ એક એવું તાપમાન છે, જ્યારે પ્રવાહીનું બાષ્પદબાશ અને પ્રવાહીની સપાટી વડે અનુભવાતું વાતાવરશનું દબાશ સરખા હોય. 1.013 bar વાતાવરશીય દબાશે પ્રવાહીનું ઉત્કલનબિંદુ સામાન્ય ઉત્કલનબિંદુ કહેવાય છે. જુદા જુદા પ્રવાહીઓના ઉત્કલનબિંદુ જુદા જુદા હોય છે. પ્રવાહીના ઉત્કલનબિંદુમાંનો તફાવત વિશેષ કરીને પ્રવાહીના અશુઓ વચ્ચે ઉદ્ભવતા આંતરઆશ્વીય બળોના તફાવતને લીધે હોય છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી

• થીલેની નળી / જેલ્ડહાલ ફ્લાસ્ક : એક

થર્મોમીટર 110 °C અથવા 360 °C : એક
 કલેમ્પ સાથેનું લોખંડનું સ્ટેન્ડ : એક

• જવલન (ignition) નળી : એક

• કેશનળી : એક

• કાર્બનિક પ્રવાહી : 1 mL

• પ્રવાહી પેરેફ્રીન /

H₂SO₄ : જરૂર પ્રમાણે

પધ્ધતિ

- (i) થીલેની નળીમાં પ્રવાહી પેરેફીન ભરો જેથી તે થીલેની નળીના વળાંકવાળા ભાગથી ઉપર સુધી ભરાય.
- (ii) આપેલ પ્રવાહીના 1-2 ટીપાં જવલન નળીમાં લો અને જવલન નળીને થર્મોમીટર સાથે આકૃતિ 3.2 માં દર્શાવ્યા પ્રમાણે રબર બેન્ડથી બાંધી દો. ધ્યાન રાખો કે જવલન નળીનો નીચેનો ભાગ અને થર્મોમીટરનો બલ્બ એક જ સપાટી પર હોય.
- (iii) આશરે 8 cm લંબાઈની કેશનળીના એક ખુલ્લા છેડાને જ્યોતમાં ગરમ કરી બંધ કરી દો.
- (iv) કેશનળીનો ખુલ્લો છેડો જવલન નળીમાં રહેલા પ્રવાહીમાં ડૂબે તેમ ગોઠવો.
- (v) થીલેની નળીની બાજુના ભાગ (arm) ને ધીમી જ્યોતથી ગરમ કરો.
- (vi) પ્રવાહી કાર્બનિક સંયોજનમાં ડૂબાડેલી કેશનળીના ખુલ્લા નીચેના ભાગમાંથી પરપોટા નીકળે તેનું અવલોકન કરો. જે તાપમાને પરપોટા તીવ્ર અને સતત રીતે નીકળવાનું શરૂ થાય તે તાપમાન નોંધો. આ તાપમાન પ્રવાહીનું ઉત્કલનબિંદુ છે.

આકૃતિ 3.2 : ઉત્કલનબિંદુ નક્કી કરવું

નોંધ : ઊંચા ઉત્કલનબિંદુ ધરાવતા પ્રવાહીના ઉત્કલનબિંદુ નક્કી કરવા માટે પેરેફીનને ગરમીના માધ્યમ તરીકે વાપરી શકાય નહિ.

શુધ્ધીકરણ અને શુધ્ધતાના અભિલક્ષણો

સાવચેતી

- (a) પ્રવાહી કાર્બનિક સંયોજનમાં ડૂબાડેલી કેશનળીના નીચેના છેડામાંથી તીવ્ર અને સતત પરપોટા નીકળવા માંડે, તે તાપમાનને ઉત્કલનબિંદુ તરીકે નોંધો.
- (b) જવલન નળીનો નીચેનો ભાગ અને થર્મોમીટરનો બલ્બ સરખી સપાટીએ રાખો.
- (c) થીલેની નળીના બાજુના ભાગ (arm) ને ધીમેથી ગરમ કરો.
- (d) જે પદાર્થનું ઉત્કલનબિંદુ નક્કી કરવાનું હોય છે તેના ઉત્કલનબિંદુ કરતાં 50 60 ℃ વધારે ઉત્કલનબિંદુ ધરાવતું પ્રવાહી થીલેની નળીમાં ભરવા માટે હોવું જોઈએ.

ચર્ચાત્મક-પ્રશ્નો

- (i) કાર્બન ટેટ્રાકલોરાઈડનું ઉત્કલનબિંદુ નક્કી કરવા માટે થીલેની નળીમાં ભરવા માટેનું યોગ્ય પ્રવાહી સૂચવો.
- (ii) ઉત્કલનબિંદુ નક્કી કરવાના હેતુસર પ્રવાહી પેરેફીનને સ્થાને બીજું કોઈ પ્રવાહી વાપરી શકાય ?
- (iii) ધારો કે પ્રવાહીનું ઉત્કલનબિંદુ દિલ્હીમાં 100 °C છે. હીલ સ્ટેશન (ઊંચાઈ પર) પર શું ઉત્કલનબિંદુ સરખું જ હશે અથવા અલગ હશે ? કારણો આપો.
- (iv) પ્રેશર કુકરમાં ખોરાક શા માટે ઝડપથી રંધાય છે ?
- (v) યુરિયા, પોટેશિયમ કલોરાઈડ અને પોટેશિયમ સલ્ફ્રેટના સમઆશ્વીય (equimolar) જથ્થા પાણીમાં ઉમેરવામાં આવે, તો પાણીનું ઉત્કલનબિંદુ કેવી રીતે બદલાશે ?
- (vi) $C_4H_{10}O$ સૂત્ર ધરાવતા આલ્કોહૉલના જુદા જુદા સમઘટકો શા માટે તેમના ઉત્કલનબિંદુમાં તફાવત દર્શાવે છે.

તમે જાણો છો ?

સ્કટિકીકરણની પ્રવિધિનો અભ્યાસ માત્ર સંયોજનના શુધ્ધીકરણ માટેના સંદર્ભમાં અગત્યનો નથી, પણ મોટા એકાકી સ્કટિકના વિકાસના મુદ્દા તરીકે પણ છે. કારણ કે એકાકી સ્કટિકના અભ્યાસે દર્શાવ્યું છે, કે તે ઘણા બધા પ્રકાશીય અને વિદ્યુતીય ગુણધર્મો ધરાવે છે. જે ખૂબ જ ઉપયોગી છે. ઉદાહરણ તરીકે, સિલિકોનના મોટા સ્કટિકમાંથી નાના સ્તરીય ખંડ (slice) જે કેટલીક અશુધ્ધિઓનું અલ્પ પ્રમાણ ધરાવે છે. તેમનો ઉપયોગ સૌર બેટરીમાં થાય છે. જેનો ઉપયોગ સેટેલાઈટના સાધનોના કાર્ય (operation) માં થાય છે. રડાર, ટેલિવિઝન અને રેડિયોમાં આવૃત્તિ નિયંત્રણમાં કેટલાક સ્કટિકોના સ્તરીય ખંડનો ઉપયોગ થાય છે. વળી, કેટલાક સંયોજનોના સ્કટિકોનો ઉપયોગ માઈક્રોફોન અને ઈયરફોનમાં થાય છે. હવે તમને ખાત્રી થશે કે રસાયણશાસ્ત્રી માટે આવી પ્રવિધિઓ શીખવી કેટલી અગત્યની છે.

એકમ-4 રાસાયણિક સંતુલન (દ્રાવણમાં આયનીય સંતુલન) Chemical Equilibrium (Ionic Equilibrium in Solution)

રાસાયણિક પ્રક્રિયાઓનું બે વર્ગમાં વર્ગીકરણ કરવામાં આવેલ છે. જેમ કે પ્રતિવર્તી અને અપ્રતિવર્તી પ્રક્રિયાઓ. પ્રતિવર્તી પ્રક્રિયાઓ એક જ પ્રક્રિયા પાત્રમાં થાય છે અને તે પુરોગામી અને પ્રતિગામી દિશાઓમાં એક જ સાથે તાપમાન અને દબાણની સમાન પરિસ્થિતિમાં આગળ વધે છે. વળી, પ્રતિવર્તી પ્રક્રિયામાં એક એવી અવસ્થાએ પહોંચીએ છીએ જયારે પુરોગામી પ્રક્રિયાનો વેગ અને પ્રતિગામી પ્રક્રિયાનો વેગ સરખા થાય છે અને એમ જણાય છે કે પ્રક્રિયા સ્થિર છે. આ અવસ્થાને ગતિશીલ સંતુલનની અવસ્થા તરીકે દર્શાવાય છે. આપેલ તાપમાન T એ નીચેની સાદી પ્રતિવર્તી પ્રક્રિયાને ધ્યાનમાં લો.

$$A + B \rightleftharpoons C + D$$

સર્કિય જથ્થાના નિયમ પ્રમાણે પુરોગામી પ્રક્રિયાનો દર $\mathbf{r}_{_{1}}$, \mathbf{A} અને \mathbf{B} ની સાંદ્રતાના ગુણાકારના સમપ્રમાણમાં થશે અને પ્રતિગામી પ્રક્રિયાનો દર $\mathbf{r}_{_{2}}$, \mathbf{C} અને \mathbf{D} ની સાંદ્રતાના ગુણાકારના સમપ્રમાણમાં થશે.

આમ,
$$\mathbf{r}_1 = \mathbf{k}_1 [\mathbf{A}] [\mathbf{B}]$$

અને $\mathbf{r}_2 = \mathbf{k}_2 [\mathbf{C}] [\mathbf{D}]$

જ્યાં, \mathbf{k}_1 અને \mathbf{k}_2 અનુક્રમે પુરોગામી અને પ્રતિગામી પ્રક્રિયાઓના વેગ અચળાંક છે. [A], [B], [C] અને [D] અનુક્રમે A, B, C અને D ની મોલર સાંદ્રતા છે. સંતુલને \mathbf{r}_1 બરાબર \mathbf{r}_2 થશે.

$$k_1[A][B] = k_2[C][D]$$

$$\Rightarrow \frac{k_1}{k_2} = \frac{[C][D]}{[A][B]}$$

$$\frac{\mathbf{k}_1}{\mathbf{k}_2} = \mathbf{K}_c$$
 મૂકતાં આપણને મળશે,

$$K_{c} = \frac{[C][D]}{[A][B]}$$

K_ુ ને સંતુલન અચળાંક કહે છે તેનું મૂલ્ય પ્રક્રિયકોની પ્રારંભિક સાંદ્રતાથી સ્વતંત્ર હોય છે અને તે તાપમાનનું વિધેય છે પરંતુ અચળ તાપમાને અચળ રહે છે. આપેલ તાપમાને જો કોઈપણ પ્રક્રિયક કે નીપજની સાંદ્રતામાં ફેરફાર કરવામાં આવે, તો સંતુલનને ખલેલ પહોંચે છે અને લ શેટેલિયરના નિયમ પ્રમાણે, પ્રક્રિયા એ દિશામાં આગળ વધશે, જે સાંદ્રતામાં થયેલા ફેરફારનો પ્રતિકાર કરશે, જેથી સંતુલન જળવાઈ રહેશે.

રાસાયણિક સંતુલન (દ્રાવણમાં આયનીય સંતુલન)

કોઈપણ પ્રક્રિયામાં સંતુલન અવસ્થાની ઓળખ દેશ્ય ગુણધર્મ (સ્થૂળદર્શક ગુણધર્મ) જેમ કે દ્રાવણના રંગની તીવ્રતાની અચળતા (constancy) છે. આ એકમમાં આપણે જુદી જુદી પ્રક્રિયાઓમાં સંતુલનમાં સ્થાનાંતર(shift)નો અભ્યાસ કરીશું.

પ્રયોગ 4.1

હેતુ

ફેરિક આયન અને થાયોસાયનેટ આયનની પ્રક્રિયામાં સંતુલનના સ્થાનાંતરનો અભ્યાસ, આ આયનોમાંથી કોઈ એકની સાંદ્રતા વધારીને કરીશું.

સિધ્ધાંત

ફેરિક ક્લોરાઈડ અને પોટેશિયમ થાયોસાયનેટ વચ્ચેની પ્રક્રિયાનું સંતુલન દ્રાવણના રંગની તીવ્રતાના ફેરફાર દ્વારા સરળતાથી શીખી શકાય છે.

$$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{SCN}^{-}(\operatorname{aq}) \rightleftharpoons \left[\operatorname{Fe}(\operatorname{SCN})\right]^{2+}(\operatorname{aq})$$
 (લોહી જેવો લાલ રંગ)

ઉપરની પ્રક્રિયા માટે સંતુલન અચળાંક નીચે પ્રમાણે લખી શકાય :

$$K = \frac{[[Fe(SCN)]^{2+}(aq)]}{[Fe^{3+}(aq)][SCN^{-}(aq)]}$$

અહિંયા, K અચળ તાપમાને અચળ છે. Fe³⁺ આયન અથવા થાયોસાયનેટ આયનની સાંદ્રતા વધારતાં [Fe(SCN)]²⁺ આયનની સાંદ્રતામાં અનુરૂપ વધારો થશે. K ના મૂલ્યને અચળ રાખવા માટે સંતુલનમાં સ્થાનાંતરણ થશે. આથી પ્રક્રિયા પુરોગામી દિશામાં જશે અને પરિણામે લોહી જેવા લાલ રંગની તીવ્રતા જે [Fe(SCN)]²⁺ ને કારણે છે, તે વધશે. સંતુલને રંગની તીવ્રતા અચળ રહે છે.

જરૂરી સામગ્રી

^{*} આ પ્રયોગ સંપૂર્શપણે ગુણાત્મક સ્વભાવનો છે. આથી દ્રાવણોની બનાવટ મોલારિટીના પર્યાયમાં ગણેલ નથી.

જોખમ ચેતવણી

 ચામડી અને આંખ સાથેના સંપર્ક ને ટાળો.

પધ્ધતિ

- (i) 0.100 g ફેરિક ક્લોરાઈડને બીકરમાં 100 mL પાણીમાં ઓગળો અને 0.100g પોટેશિયમ થાયોસાયનેટને બીજા બીકરમાં 100 mL પાણીમાં ઓગાળો.
- (ii) 20 mL ફેરિક કલોરાઈડ દ્રાવણને 20 mL પોટેશિયમ થાયોસાયનેટ દ્રાવણ સાથે મિશ્ર કરો. લોહી જેવો લાલ રંગ મળશે. આ દ્રાવણને બ્યુરેટમાં ભરો.
- (iii) એક જ માપની પાંચ ઉત્કલન નળીઓ લો અને તેમના પર a, b, c, d અને e એમ ચિહ્ન કરો.
- (iv) બ્યુરેટમાંથી દરેક ઉત્કલન નળીમાં 2.5 mL લોહી જેવા લાલ રંગનું દ્રાવણ ઉમેરો.
- (v) ઉત્કલન નળી a માં 17.5 mL પાણી ઉમેરો જેથી, દ્રાવણનું ફુલ કદ 20 mL થશે. તેને સંદર્ભ માટે રાખો.
- (vi) હવે ત્રણ બ્યુરેટ લો અને તેમને A, B, C લેબલ લગાડો.
- (vii) બ્યુરેટ A માં ફેરિક ક્લોરાઈડનું દ્રાવશ ભરો અને બ્યુરેટ B માં પોટેશિયમ થાયોસાયનેટનું દ્રાવશ ભરો અને બ્યુરેટ C માં પાણી ભરો.
- (viii) ઉત્કલન નળી b, c, d અને e માં અનુક્રમે 1.0 mL, 2.0 mL, 3.0 mL અને 4.0 mL ફેરિક ક્લોરાઈડ દ્રાવણ બ્યુરેટ A માંથી ઉમેરો.
- (ix) હવે ઉત્કલન નળી b, c, d અને e માં બ્યુરેટ C માંથી અનુક્રમે 16.5 mL, 15.5 mL, 14.5 mL અને 13.5 mL પાણી ઉમેરો જેથી દરેક ઉત્કલન નળીમાં દ્રાવણનું કુલ કદ 20.0 mL થશે.

આકૃતિ 4.1 : સંતુલનનું અવલોકન કરવા માટેના પ્રયોગનો સેટ, દરેક ઉત્કલન નળી 20 mL દ્રાવણ ધરાવે છે.

- નોંધ : દ્રાવણના રંગની તીવ્રતા મંદન કરતાં ઘણી ઘટશે, તેથી ઘેરો લાલ લોહી જેવો રંગ નહિ હોય.
 - દરેક ઉત્કલનનળીમાં ફુલ કદ 20 mL છે.
 - દરેક ઉત્કલન નળીમાં 2.5 mL સંતુલન મિશ્રણ છે.
 - FeCl₃ નો જથ્થો 'b' થી 'e' ઉત્કલન નળી તરફ જતાં વધતો જશે.

રાસાયણિક સંતુલન (દ્રાવણમાં આયનીય સંતુલન)

- (x) દરેક ઉત્કલન નળીના દ્રાવણની રંગની તીવ્રતા ઉત્કલન નળી 'a' માંના સંદર્ભ દ્રાવણના રંગની તીવ્રતા સાથે સરખાવો.
- (xi) બીજી ચાર સ્વચ્છ ઉત્કલન નળીનો એક સેટ લો. બ્યુરેટમાંથી તે દરેકમાં 2.5 mL લોહી જેવા લાલ રંગનું દ્રાવણ લો. પ્રયોગનું પુનરાવર્તન 1.0 mL, 2.0 mL, 3.0 mL અને 4.0 mL પોટેશિયમ થાયોસાયનેટનું દ્રાવણ બ્યુરેટ Bમાંથી અનુક્રમે ઉત્કલન નળી b, c, d અને e માં ઉમેરો ત્યારબાદ આ ઉત્કલન નળીઓમાં અનુક્રમે 16.5 mL, 15.5 mL, 14.5 mL અને 13.5 mL પાણી ઉમેરો. આ ઉત્કલન નળીઓના દ્રાવણના રંગની તીવ્રતા ઉત્કલન નળી(a)માંના સંદર્ભ સંતુલન દ્રાવણ સાથે સરખાવો.
- (xii) તમારા પરિષ્ટામો કોપ્ટક સ્વરૂપે કોપ્ટક 4.1 અને 4.2 પ્રમાણે નોંધો.
- (xiii) તમે જુદા જુદા જથ્થા ધરાવતાં ફેરિક ક્લોરાઈડ અને પોટેશિયમ થાયોસાયનેટના દ્રાવણ સાથે અવલોકનોનું પુનરાવર્તન કરી શકો અને સંદર્ભ દ્રાવણ સાથે સરખાવો.

કોષ્ટક 4.1 ફેરિક આયનની સાંદ્રતા વધારતાં સંતુલન સ્થાનાંતર

		•	
	પ્રણાલીમાં લીધેલ	ઉત્કલન નળી "a" માંના સંદર્ભ	સંતુલનમાં
ઉત્કલન નળી	ફેરિક કલોરાઈડ દ્રાવણનું	દ્રાવણ સાથે સરખાવતાં રંગ	સ્થાનાંતરની દિશા
	કદ mL માં	તીવ્રતામાં ફેરફાર	
a	2.5 mL લોહી જેવું લાલ દ્રાવ	ણ + 17.5 mL પાણી ધરાવતું સંદર્ભ	સંતુલન સ્થિતિ
	દ્રાવણ જેની સાથે રંગની તીવ્ર		
	મિશ્રણ)		
b	1.0		
С	2.0		
d	3.0		
e	4.0		

કોષ્ટક 4.2 થાયોસાયનેટ આયનની સાંદ્રતા વધારતાં સંતુલન સ્થાનાંતર

	પ્રણાલીમાં લીધેલા	ઉત્કલન નળી "a" માંના સંદર્ભ	સંતુલનમાં દિશાનું
ઉત્કલન નળી	થાયોસાયનેટ દ્રાવણનું	દ્રાવણ સાથે સરખાવતાં	સ્થાનાંતર
	કદ mL માં	રંગની તીવ્રતામાં ફેરફાર	
a	2.5 mL લોહી જેવા લાલ દ્રાવ	ાણ + 17.5 mL પાણી ધરાવતું સંદર્ભ	સંતુલન સ્થિતિ
	દ્રાવણ જેની સાથે રંગની તીવ્રત		
	મિશ્રણ)		
b'	1.0		
c'	2.0		
ď	3.0		
e'	4.0		

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

CECCE CONTROLL OF THE PARTY OF

સાવચેતી

- (a) ફેરિક ક્લોરાઈડ અને પોટેશિયમ થાયોસાયનેટના ખૂબ જ મંદ દ્રાવણ વાપરો.
- (b) રંગની તીવ્રતાની સરખામણી માટે ઉત્કલન નળી અને સંદર્ભ ઉત્કલન નળીને એકબીજાની લગોલગ (બાજુ બાજુમાં) રાખો.
- (c) દ્રાવણના રંગમાં ફેરફારને સારી રીતે નક્કી કરવા માટે વિસૃત (diffused) સૂર્યપ્રકાશમાં રાખીને રંગની તીવ્રતા નોંધો.
- (d) સમાન કદની ઉત્કલન નળીઓ વાપરો.

ચર્ચાત્મક પ્રશ્નો

(i) પુસ્તકમાં આપેલ ફેરિક અને થાયોસાયનેટ વચ્ચેની આયનીય પ્રક્રિયાને નીચે પ્રમાણે શા માટે દર્શાવવી જોઈએ તે સમજાવો.

$$Fe^{3+}$$
 (aq) + SCN^{-} (aq) \rightleftharpoons $[Fe(SCN)]^{2+}$ (aq)

ઉપરની પ્રક્રિયા નીચેના સ્વરૂપમાં વધુ યોગ્ય છે ?

$$[Fe(H_2O)_5]^{3+} + SCN^-(aq) \rightleftharpoons [Fe(H_2O)_5 (SCN)]^{2+} + H_2O.$$

- (ii) રંગની તીવ્રતામાં સ્થિર સંતુલનનો ગતિશીલ સ્વભાવ સૂચવે છે ? યોગ્ય કારણો સાથે તમારો જવાબ સમજાવો.
- (iii) સંતુલન અચળાંક શું છે ? અને તે વેગ અચળાંકથી કેવી રીતે અલગ પડે છે ?
- (iv) આ પ્રયોગને હંમેશા મંદ દ્રાવણો વડે જ કરવો જોઈએ, તે સલાહ ભરેલું છે. શા માટે ?
- (v) સંતુલનમાં રહેલી પ્રશાલીમાં ઘન પોટેશિયમ કલોરાઈડ ઉમેરવામાં આવે, તો શું અસર થશે ? તમારા જવાબને પ્રાયોગિક રીતે ચકાસો.
- (vi) શા માટે સરખા માપની (કદની) ઉત્કલન નળીઓ પ્રયોગમાં ઉપયોગમાં લેવાય છે ?

પ્રયોગ 4.2

હેતુ

 $[\mathrm{Co}(\mathrm{H_2O})_6]^{2+}$ અને $\mathrm{Cl^-}$ આયનો વચ્ચેની પ્રક્રિયાના સંતુલનમાં આ આયનોમાંથી કોઈપણ એક આયનની સાંદ્રતામાં ફેરફાર કરવાથી સંતુલનમાં થતા સ્થાનાંતરણનો અભ્યાસ કરવો.

સિધ્ધાંત

 $[\mathrm{Co}(\mathrm{H_2O})_6]^{2+}$ અને CI^- આયન વચ્ચેની પ્રક્રિયામાં નીચે પ્રમાણેની વિસ્થાપન પ્રક્રિયા થાય છે.

$$[{\rm Co(H_2O)_6}]^{2^+} + 4{\rm C1^-} \iff [{\rm CoCl_4}]^{2^-} + 6{\rm H_2O}$$
 ગુલાબી વાદળી

રાસાયણિક સંતુલન (દ્રાવણમાં આયનીય સંતુલન)

આ પ્રક્રિયા લિગેન્ડ વિસ્થાપન પ્રક્રિયા તરીકે ઓળખાય છે અને આને માટે સંતુલન અચળાંક K નીચે પ્રમાણે લખી શકાય.

હાઈડ્રૉકલોરિક ઍસિડ

આલ્કોહૉલ

જોખમ અંગેની ચેતવણી

- એસીટોન અને આલ્કોહૉલ જવલનશીલ છે, તેથી ઉપયોગમાં ન હોય ત્યારે બોટલ ખુલ્લી ન રાખશો.
- બોટલને જ્યોતથી દૂર રાખશો.
- ઉપયોગ પછી તમારાં હાથ ધુઓ.
- સલામતી ચશ્મા પહેરો.

પ્રક્રિયા જલીય માધ્યમમાં થાય છે અને તેથી એવું માનવામાં આવેલ છે કે H₂O ની સાંદ્રતા લગભગ અચળ રહે છે અને તેનો સમાવેશ K ના મૂલ્યમાં જ થઈ જાય છે. આથી સંતુલન અચળાંકના સમીકરણમાં તેને અલગ રીતે દર્શાવાતી નથી.

હવે, જો $[Co(H_2O)_6]^{2+}$ આયન અથવા CI^- આયનની સંતુલન સાંદ્રતા વધારવામાં આવે, તો તેના પરિશામે [CoCl_]]²- ની સાંદ્રતામાં વધારો થશે. જેથી K નું મૂલ્ય અચળ રહેશે. બીજા શબ્દોમાં આપણે કહી શકીએ કે સંતુલન પુરોગામી દિશામાં ખસશે અને તેને અનુરૂપ રંગ પરિવર્તનમાં પરિણમશે.

જરૂરી સામગ્રી

કોનિકલ ફ્લાસ્ક (100 mL) : એક

બીકર (100 mL) ત્રણ

બ્યુરેટ ત્રણ કસનળી છ

કસનળી સ્ટેન્ડ એક

કાચનો સળીયો એક

એસીટોન / આલ્કોહૉલ 60 mL સાંદ્ર હાઈડ્રૉકલોરિક ઍસિડ : 30 mL

કોબાલ્ટ કલોરાઈડ $0.6000 \, \mathrm{g}$

પધ્ધતિ

- 100 mLના કોનિકલ ફ્લાસ્કમાં 60 mL એસીટોન લો અને 0.6000 g (i) CoCl, ને ઓગાળો જેથી વાદળી દ્રાવણ મળે.
- પાંચ સરખા કદની કસનળી લો અને તેમના પર A, B, C, D અને E એમ (ii) ચિહ્ન કરો. A થી E સુધીની દરેક કસનળીમાં 3.0 mL કોબાલ્ટ ક્લોરાઈડનું દ્રાવણ લો. હવે આ કસનળીમાં અનુક્રમે 1.0 mL, 0.8 mL, 0.6 mL, 0.4 mL અને 0.2 mL એસીટોન ઉમેરો. હવે 0.2 mL, 0.4 mL, 0.6 mL અને 0.8 mL પાણી અનુક્રમે કસનળી B, C, D, E માં ઉમેરો. જેથી દરેક કસનળીમાં દ્રાવણનું કુલ કદ 4.0 mL થશે.
- (iii) પાણીના વધતા પ્રમાણ સાથે મિશ્રણમાં વાદળીમાંથી ગુલાબી રંગમાં થતો ક્રમિક ફેરફાર નોંધો.
- ઉપર પ્રમાણે કોબાલ્ટ ક્લોરાઈડના એસીટોનમાં બનાવેલ દ્રાવણના 10 mL લો (iv) અને તેમાં 5 mL નિસ્યંદિત પાણી ઉમેરો. ગુલાબી રંગનું દ્રાવણ મળશે.
- તબક્કા (iv) પ્રમાણેના ગુલાબી દ્રાવણના 1.5 mL દ્રાવણ પાંચ જુદી જુદી (v) કસનળીઓ જેને A', B', C', D' અને E' એમ ચિહ્નિત કરી છે તેમાં લો. હવે 2.0 mL, 1.5 mL, 1.0 mL અને 0.5 mL પાણી A' થી D' સુધી ચિહિ્નત
- નોંધ: પ્રયોગોના પ્રથમ સેટમાં ક્લોરોસંકીર્શની સાંદ્રતા અચળ છે અને પાણીની સાંદ્રતા બદલાય છે.
 - પ્રયોગોના બીજા સેટમાં એકવા સંકીર્શની સાંદ્રતા અચળ છે અને ક્લોરાઇડ આયનની સાંદ્રતા વધે છે.

51

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

કરેલી કસનળીમાં અનુક્રમે ઉમેરો. કસનળી A' થી E' માં અનુક્રમે 0.5 mL, 1.0 mL, 1.5 mL, 2.0 mL અને 2.5 mL સાંદ્ર HCI ઉમેરો. જેથી દરેક કસનળીમાં દ્રાવણનું કુલ કદ 4 mL થશે.

(vi) હાઈડ્રોક્લોરિક ઍસિડના પ્રમાણમાં (જથ્થામાં) વધારા સાથે ગુલાબી રંગમાંથી આછા વાદળી રંગમાં થતો ક્રમિક ફેરફાર નોંધો. તમારા અવલોકનો કોપ્ટક સ્વરૂપે નોંધો (કોપ્ટક 4.3 અને 4.4).

કોષ્ટક 4.3 : પાણી ઉમેરવાથી સંતુલનમાં સ્થાનાંતરણ

ક્રમ	કસનળી	ઉમેરેલ એસીટોનનું	ઉમેરેલ CoCl ₂ દ્રાવણનું	ઉમેરેલ પાણીનું	મિશ્રણનો
સંખ્યા		કદ mLમાં	કદ mL માં	કદ mL માં	રંગ
1	A	1.0	3.0	0.0	
2	В	0.8	3.0	0.2	
3	С	0.6	3.0	0.4	
4	D	0.4	3.0	0.6	
5	Е	0.2	3.0	0.8	

કોષ્ટક 4.4 : Cl⁻ આયનના ઉમેરવાથી સંતુલનમાં સ્થાનાંતરણ

			•		
ક્રમ	કસનળી	ઉમેરેલ સાંદ્ર HClનું	એકવોસંકીર્ણ દ્રાવણનું	ઉમેરેલ પાણીનું	મિશ્રણનો
સંખ્યા		કદ mLમાં	ઉમેરેલ કદ mL માં	કદ mL માં	રંગ
1	A'	0.5	1.5	2.0	
2	B'	1.0	1.5	1.5	
3	C'	1.5	1.5	1.0	
4	D'	2.0	1.5	0.5	
5	E '	2.5	1.5	0.0	<i></i>
	I	I		1	

સાવચેતી

- (a) પ્રયોગ 4.1 માં દર્શાવેલ બધી સાવચેતી રાખો.
- (b) પ્રયોગ માટે નિસ્યંદિત પાણી વાપરો.
- (c) પાણી અથવા દ્રાવણો ઉમેરવા માટે બ્યુરેટ અથવા અંકિત પિપેટનો ઉપયોગ કરો.

ચર્ચાત્મક પ્રશ્નો

- (i) સંતુલનને પ્રક્રિયા મિશ્રણનું તાપમાન વધારતાં શું અસર થશે ?
- (ii) સોડિયમ કલોરાઈડનું જલીય દ્રાવણ સાંદ્ર HCl ને બદલે વાપરી શકાય ? તમારા જવાબને પ્રાયોગિક રીતે ચકાસી જુઓ.
- (iii) દરેક કસનળીમાં દ્રાવણનું કુલ કદ શા માટે એક સરખું જ રાખવું જોઈએ ?

તમે આયનીકરણ ન પામેલા ક્ષાર અને તેને દ્રાવકમાં ઓગાળતાં મળતાં આયનો વચ્ચેના ગતિશીલ સંતુલન અંગેના પ્રયોગો કર્યા છે. આ એકમમાં આપણે આયનીકરણ નહિ પામેલા પાણીના અણુ અને H⁺ અને OH⁻ આયનો વચ્ચેના આયનીય સંતુલનનો અભ્યાસ કરીશું. વાહકતાના પ્રયોગોએ સાબિત કર્યું છે કે શુધ્ધ પાણી કંઈક અંશે આયનીકરણ પામે છે. જો કે તેની વાહકતા ઘણી ઓછી છે, તો પણ આના આધારે એમ તારવી શકાય કે શુધ્ધ પાણીમાં પણ આયનીય સંતુલન સ્થપાય છે. આયનીય સંતુલન નીચે પ્રમાણે રજૂ કરી શકાય:

$$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$$

ધનવીજભાર અને નાની આયનીય ત્રિજ્યાને કારણે પાણીમાં H⁺ આયનનું સ્વતંત્ર અસ્તિત્વ હોતું નથી આ સંતુલનની નીચે પ્રમાણેની રજૂઆત વધારે સારી છે :

$$2H_2O(l) \rightleftharpoons H_2O^+(aq) + OH^-(aq)$$

આ પાણીનું **સ્વ આયનીકરણ છે.** આ રાસાયણિક સમીકરણ માટે સંતુલન અચળાંક નીચે પ્રમાણે લખી શકાય :

$$K = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

પાણી વિપુલ પ્રમાણમાં હોવાથી, તેની સાંદ્રતા અચળ છે એમ માની લઈને તેને K સાથે સંયોજી શકાય અને નવો અચળાંક $K_{_{\mathrm{w}}}$ દર્શાવી શકાય, જે નીચે પ્રમાણે લખી શકાય.

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$

 K_w પાણીનો સ્વ આયનીકરણ અચળાંક છે અથવા પાણીનો આયનીય અચળાંક છે. તે અચળ તાપમાને અચળ રહે છે. $25~^{\circ}$ C તાપમાને K_w નું મૂલ્ય 1.0×10^{-14} છે. આમ એ સ્પષ્ટ છે કે આપેલ તાપમાને કોઈપણ જલીય દ્રાવણમાં આ ગુણાકાર એટલે કે $[H_3O^+]$ $[OH^-]$ દ્રાવણ ઍસિડિક, આલ્કલાઈન અથવા તટસ્થ હોય, તો પણ અચળ રહે છે. જો પદાર્થને ઓગાળવાથી સંતુલનને એવી રીતે ખસેડે જેથી હાઈડ્રૉનિયમ આયનની સાંદ્રતા હાઈડ્રૉકિસલ આયનની સાંદ્રતા કરતાં વધી જાય, તો દ્રાવણ ઍસિડીક સ્વભાવનું રહેશે. જો પદાર્થને ઓગાળવાથી સંતુલનને એવી રીતે ખસેડે, કે જેથી OH^- ની સંતુલન સાંદ્રતા હાઈડ્રૉનિયમ આયનની સાંદ્રતા કરતાં વધારે થાય, તો દ્રાવણ આલ્કલાઈન સ્વભાવનું રહેશે. આમ જલીય દ્રાવણમાં હાઈડ્રૉનિયમ આયનની સાંદ્રતા નાવણના ઍસિડીક, બેઝિક અને તટસ્થ સ્વભાવની માહિતી પૂરી પાડે છે. દ્રાવણમાં H_3O^+ આયનની સાંદ્રતા pH ના પર્યાયમાં મપાય છે. જે હાઈડ્રૉનિયમ આયનની સાંદ્રતાનો ઋણ લઘુગણક છે અને તે નીચેના સમીકરણથી આપી શકાય છે :

$$pH = -log_{10} [H_3O^+]$$

ઓરડાના તાપમાને તટસ્થ પાણીની pH 7 છે. આનાથી ઓછી pH વાળું દ્રાવણ ઍસિડિક સ્વભાવનું અને આનાથી વધારે pH વાળું દ્રાવણ બેઝિક સ્વભાવનું હોય છે.

પ્રયોગ 5.1

હેતુ

કેટલાક ફળના રસ (જ્યુસ)ની pH નક્કી કરવી.

સિધ્ધાંત

કેટલાક રંગકો જુદી જુદી pH કિંમતે જુદા જુદા રંગ દર્શાવે છે. આ ઍસિડ-બેઇઝ સૂચક તરીકે વર્તે છે. દ્રાવણની આશરે pH મેળવવા માટે રંગકોના મિશ્રણનું દ્રાવણ વાપરી શકાય છે. રંગકોના મિશ્રણનું દ્રાવણ શૂન્યથી 14 સુધીના pH મૂલ્યો માપવા માટે વપરાય છે. તેને સાર્વત્રિક સૂચક કહે છે. કેટલાક સાર્વત્રિક સૂચકો 0.5 જેટલા pH ફેરફારને પણ માપી શકે છે. હકીકતમાં, રંગકો પોતે જ નિર્બળ ઍસિડ કે બેઈઝ હોય છે. પ્રોટોનના સ્વીકાર અથવા મુક્તિ (દાન)ને કારણે રંગકના બંધારણ બદલાય છે અને તેને પરિણામે રંગ ફેરફાર થાય છે. રંગકના જુદા જુદા સ્વરૂપોના રંગ જુદા જુદા હોય છે અને તેથી દ્રાવણની pH ના ફેરફાર સાથે રંગમાં ફેરફાર થાય છે. એક પ્રમાણિત ચાર્ટ જેમાં સાર્વત્રિક સૂચકનો pH સાથે રંગના ફેરફાર દર્શાવતો સૂચક પત્ર અથવા દ્રાવણ સાથેનો આપવામાં આવે છે અને અવલોકન કરેલ રંગ અને ચાર્ટ પરના રંગને સરખાવવાથી દ્રાવણની pH નો સારો એવો અંદાજ મેળવી શકાય છે.

આ હાયડ્રાન્જીસ (Hydrangeas) નો રંગ જેમાં તે ઉગે છે તે જમીનની pH પર આધાર રાખે છે. જો જમીનની pH એસિડિક હોય, તો ફૂલો વાદળી હોય છે અને જો pH આલ્કલાઈન હોય તો ફૂલો ગુલાબી હોય છે.

pH અને જલીય દ્રાવણોમાં pH ફેરફાર

જરૂરી સામગ્રી

બીકર (100 mL) : ચાર

ચાર

કાચનું ડ્રોપર ચાર

pH ચાર્ટ એક

કસનળી

ફળનો રસ (જ્યુસ)

ઃ લીંબુ, નારંગી,

સફરજન, પાઈનેપલ

pH પત્ર/ સાર્વત્રિક સૂચક દ્રાવણ : જરૂર પ્રમાણે

પધ્ધતિ

- લીંબુ, નારંગી, સફરજન અને પાઈનેપલના તાજા રસને (જ્યુસ) 100 mL (i) ધારિતા વાળા અલગ અલગ બીકરમાં લો.
- 1, 2, 3 અને 4 ચિહ્નિત કરેલી કસનળી દરેકમાં ચાર જુદા જુદા ડ્રોપરની મદદથી (ii) આશરે 2 mL તાજો રસ (જ્યુસ) (20 ટીપાં) લો.
- દરેક કસનળીમાં સાર્વત્રિક સૂચકનાં બે ટીપાં ઉમેરો અને દરેક કસનળીમાંના (iii) પદાર્થને હલાવીને સારી રીતે મિશ્ર કરો.
- દરેક કસનળીમાં દેખાતો રંગ પ્રમાણિત pH ચાર્ટ પરના રંગ સાથે મેળવો (સરખાવો).
- તમારા અવલોકન કોષ્ટક 5.1 માં નોંધો. (v)
- pH પત્રોનો ઉપયોગ કરીને પ્રયોગનું પુનરાવર્તન કરો, જેથી જુદા જુદા જયુસના pH ની ખાત્રી કરી શકાય અને તે દરેક રંગને સાર્વત્રિક સૂચકથી મેળવેલ રંગ સાથે સરખાવો.
- (vii) ચારેય જયુસના pH મૂલ્યોને ચઢતા ક્રમમાં ગોઠવો.

કોષ્ટક 5.1 જુદા જુદા ફળના રસ (જ્યુસ)ના pH મૂલ્યો

રસ (જ્યુસ)નું નામ	સાર્વત્રિક સૂચક સાથે રંગ	pН	અનુમાન
લીંબુ			
નારંગી			
સફરજન			
પાઈનેલ			

าเ	n	101	ì	บ
M.	LΨ	ષ	ı.	ч

જ્યુસના pH મૂલ્યોનો ચઢતો ક્રમ _

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સાવચેતી

- (a) દરેક કસનળીમાં સરખા કદના દ્રાવણમાં સાર્વત્રિક સૂચકના ટીપાં સરખી સંખ્યામાં ઉમેરો.
- (b) દ્રાવણના રંગને pH ચાર્ટ સાથે ધ્યાનથી સરખાવો.
- (c) pH પત્રોને એવી સલામત જગ્યાએ રાખો જેથી પ્રયોગશાળામાંના ઍસિડિક અને બેઝિક પ્રક્રિયકોના સંપર્કમાં આવે નહિ (સંપર્કમાં આવવાનું ટાળો).
- (d) પ્રયોગ માટે હંમેશા તાજા રસ (જ્યુસ) વાપરો.

ચર્ચાત્મક પ્રશ્નો

- (i) ચારેય જ્યુસમાંથી કયું સૌથી ઓછું ઍસિડિક છે ? સમજાવો.
- (ii) જો આપણે દરેક જ્યુસને મંદ બનાવીએ, તો pH મૂલ્યોમાં કેવી અસર જોવા મળશે ?
- (iii) કોઈપણ બે જ્યુસને ભેગા કર્યા પછી મળતા મિશ્રણની pH બદલાશે કે બદલાશે નહિ (સરખી જ રહેશે) ?
- (iv) તમે સોફ્ટ ડ્રિન્ક (પીણાં)ની pH ની કેવી રીતે ખાતરી કરશો ?

પ્રયોગ 5.2

હેતુ

મંદન કરતાં ઍસિડ / બેઈઝના pH માં થતા ફેરફારનું અવલોકન કરવું.

સિધ્ધાંત

પ્રતિ એકમ કદમાં હાઈડ્રૉજન આયનની સાંદ્રતા મંદન કરવાથી ઘટે છે. આથી દ્રાવણનું મંદન કરતાં pH માં ફેરફારની અપેક્ષા રાખી શકાય.

જરૂરી સામગ્રી

- ઉત્કલન નળી : આઠ
- કાચનું ડ્રોપર : ચાર
- કસનળી : જરૂર પ્રમાણે

- 0.1 M HCl દ્રાવશ : 20 mL
- 0.1 M NaOH દ્રાવણ : 20 mL
- 0.05 M H₂SO₄ রাবিয় : 20 mL
- pH પત્ર / સાર્વત્રિક સૂચક : જરૂર પ્રમાણે

પધ્ધતિ

- (i) ચાર ઉત્કલન નળી લો અને તેમને A, B, C અને D એમ ચિહ્નિત કરો (આકૃતિ 5.1).
- (ii) ઉત્કલન નળી A માં 2 mL 0.1 M HCl લો.

pH અને જલીય દ્રાવણોમાં pH ફેરફાર

- (iii) ઉત્કલન નળી B માં 2 mL 0.1 M HCl લો અને તેમાં 18 mL પાણી ઉમેરો અને સારી રીતે મિશ્ર કરો.
- (iv) ઉત્કલન નળી B માંથી 5 mL મંદ HCl નું દ્રાવણ ઉત્કલન નળી C માં લો અને તેમાં 15 mL પાણી ઉમેરો.

આકૃતિ 5.1 : પ્રયોગ 5.1 માટેની ગોઠવણી

- (v) ઉત્કલન નળી C માંથી 5 mL મંદ HCl ઉત્કલન નળી D માં લો અને તેમાં 15 mL પાણી ઉમેરો.
- (vi) pH પત્રને નાના નાના ટુકડામાં કાપો અને સ્વચ્છ ગ્લેઝ ટાઈલ પર પાથરી દો.
- (vii) ડ્રોપરની મદદ વડે ઉત્કલન નળી A માંથી થોડું દ્રાવણ લો અને ગ્લેઝ ટાઈલ પર રાખેલા pH પત્રના એક ટુકડા પર તેનું એક ટીપું મૂકો. pH પત્રનો રંગ પ્રમાણિત ચાર્ટ સાથે સરખાવો.
- (viii) આ જ પ્રમાણે ઉત્કલન નળી B, C અને D ના દ્રાવણોની pH ની અનુક્રમે પરખ કરો અને તમારા પરિણામો કોષ્ટક 5.2 માં નોંધો.
- (ix) દ્રાવણ B, C અને D ની હાઈડ્રૉજન આયનની સાંદ્રતા ગણો.
- (x) દરેક ઉત્કલન નળીમાંથી 1 mL દ્રાવણ અલગ અલગ કસનળીમાં લઈ લો. આ ઉત્કલન નળીમાંની દરેકમાં 2 ટીપાં સાર્વત્રિક સૂચક ઉમેરો. ઉત્કલન નળીને બરાબર હલાવો અને pH ની અંદાજ નક્કી કરવા માટે તેમના રંગને પ્રમાણિત pH ચાર્ટ સાથે મેળવો (સરખાવો).
- (xi) એ જ પ્રમાણે $0.05 \,\mathrm{M}$ $\mathrm{H_2SO_4}$ અને $0.1 \,\mathrm{M}$ NaOH દ્રાવણોને ઉપર દર્શાવેલ તબક્કા (i) થી (ix) માં આપેલી વિગત પ્રમાણે મંદન કરી pH નું અવલોકન કરો.
- (xii) તમારા અવલોકનો કોષ્ટક 5.2 માં નોંધો.
- (xiii) સાર્વત્રિક સૂચક પત્ર અને સાર્વત્રિક સૂચક દ્રાવણના ઉપયોગ કરી મેળવેલા પરિણામોને સરખાવો.

જોખમ અંગેની ચેતવણી

- ઍસિડમાં પાણી કદી ઉમેરશો નહીં.
- મંદન માટે પાણીમાં ધીમેથી ઍસિડ ઉમેરો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

કોષ્ટક 5.2 મંદન કરતાં pH ફેરફાર

ઉત્કલન નળી	Н	CI	H ₂ SO ₄		NaOH	
	રંગ	pН	રંગ	pН	રંગ	pН
A						
В						
С						
D						

પરિશામ

- (i) ઉત્કલન નળી B, C અને D માંના દ્રાવણોની સાંદ્રતા _____ છે.
- (i) મંદન સાથે pH માં ફેરફાર વિશે તમારું તારણ લખો.

00000000

સાવચેતી

- (a) દરેક ઉત્કલન નળીમાંના દ્રાવણોના સરખા જથ્થામાં સાર્વત્રિક સૂચકના સરખી સંખ્યામાં ટીપાં ઉમેરો.
- (b) દ્રાવણના રંગને pH ચાર્ટ સાથે કાળજીપૂર્વક મેળવો (સરખાવો).

ચર્ચાત્મક પ્રશ્નો

- (i) ઍસિડિક તેમજ બેઝિક દ્રાવશ માટે મંદન સાથે pH માં ફેરફાર માટે કેવું વલશ જોવા મળે છે ?
- (ii) મંદન સાથે pH માં થતા ફેરફાર અંગેના પરિણામો તમે કેવી રીતે સમજાવશો ?
- (iii) જો બે ઍસિડિક દ્રાવણો (ધારો કે A અને C) મિશ્ર કરવામાં આવે, તો મિશ્રણની pH ને શું થશે ? તમારો જવાબ પ્રાયોગિક રીતે ચકાસો.
- (iv) દરેક ઍસિડિક દ્રાવશ ભલે તે HCl કે H_2SO_4 હોય, pH લગભગ સરખાં હોય છે. તેમ છતાં પશ HCl 0.1~M છે અને H_2SO_4 0.05~M છે. આ પરિશામને તમે કેવી રીતે સમજાવો છો ?
- (v) શું 0.1 M ઍિસટિક ઍિસડની pH, 0.1 M હાઈડ્રૉક્લોરિક ઍિસડની pH સરખી હશે ? તમારા પરિણામને ચકાસો અને તેને સમજાવો.

પ્રયોગ 5.3 ઃ

હેતુ

નિર્બળ ઍસિડ અને નિર્બળ બેઈઝની pH પર સમાન આયનની અસરને કારણે થતાં ફેરફારનો અભ્યાસ કરવો.

pH અને જલીય દ્રાવણોમાં pH ફેરફાર

સિધ્ધાંત

એ જાણીતી હકીકત છે કે નિર્બળ ઍસિડ અથવા નિર્બળ બેઈઝના કિસ્સામાં આયનીકરણ પ્રતિવર્તી પ્રક્રિયા છે.

- (1) HA ⇒ H⁺ + A⁻ (નિર્બળ ઍસિડ)
- (2) BOH ⇒ B+ + OH- (નિર્બળ બેઈઝ)

કિસ્સા (1) માં જો A^- ની સાંદ્રતામાં વધારો થાય, તો અને કિસ્સા (2)માં જો B^+ ની સાંદ્રતામાં વધારો થાય, તો સંતુલન પ્રતિગામી દિશામાં ખસેડશે. જેથી કરીને કિસ્સા (1) અને (2) માં અનુક્રમે H^+ આયન અને OH^- આયનની સાંદ્રતા ઘટશે. જેથી કરીને સંતુલન અચળાંકની સ્થિરતા જળવાઈ રહેશે. H^+ આયનની સાંદ્રતા અથવા OH^- આયનની સાંદ્રતામાં આ ફેરફાર પ્રણાલીની pH માં ફેરફાર લાવશે. જેનો નિર્ણય pH પત્ર અથવા સાર્વત્રિક સૂચક દ્રાવણના ઉપયોગથી કરી શકાય.

જરૂરી સામગ્રી

- બીકર (100 mL) : ચાર
- પિપેટ (25 mL) : બે
- કસનળી : ચાર
- pH ચાર્ટ : એક

- સોડિયમ ઈથેનોએટ
 - એમોનિયમ કલોરાઈડ : 2 g
- ઈથેનોઈક એસિડ (1.0 M) : 50 mL
- એમોનિયા દ્રાવણ (1.0 M) : 50 mL
- pH પત્ર અને સાર્વત્રિક સૂચક : જરૂર પ્રમાણે

પધ્ધતિ

- (i) ચાર 100 mL બીકર લો અને તેમને A, B, C, D પ્રમાણે ચિહ્નિત કરો.
- (ii) બીકર 'A' માં 25 mL 1.0 M ઈથેનોઈક ઍસિડ લો અને બીકર 'B' માં 25 mL 1.0 M એમોનિયા દ્રાવણ લો.
- (iii) તે જ પ્રમાણે બીકર 'C' માં 25 mL 1.0 M ઈથેનોઈક ઍસિડ અને બીકર 'D' માં 25 mL 1.0 M એમોનિયા દ્રાવણ લો. હવે બીકર 'C' માં 2 g સોડિયમ ઈથેનોએટ ઉમેરો અને બીકર 'D' માં 2 g એમોનિયમ ક્લોરાઈડ ઉમેરો અને બીકરને બરાબર હલાવીને તેમાંના પદાર્થને બરાબર ઓગાળો.
- (iv) 1, 2, 3 અને 4 ચિહ્ન કરેલ ચાર કસનળીમાં અનુક્રમે 2 mL (20 ટીપાં) દ્રાવણ બીકર A, B, C અને D માંથી લો.
- (v) દરેક કસનળીમાં સાર્વત્રિક સૂચક દ્રાવશના બે બે ટીપાં ઉમેરો. કસનળીમાંના દ્રાવશને બરાબર હલાવો અને દરેક કસનળીમાંના રંગને પ્રમાશિત ચાર્ટ સાથે મેળવો (સરખાવો).
- (vi) કોષ્ટક 5.3 માં આપ્યા પ્રમાણે તમારા અવલોકનો નોંધો.
- (vii) કસનળી 1 અને 3 માંના દ્રાવશની pHની સરખામણી કરો અને pHમાં ફેરફાર નોંધો.
- (viii) એ જ પ્રમાણે કસનળી 2 અને 4 માંના દ્રાવણની pHની સરખામણી કરો અને pHમાં ફેરફાર નોંધો.

એમોનિયા દ્રાવણ

2 g

ઈથેનોઈક ઍસિડ

એમોનિયમ કલોરાઈડ

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

કોષ્ટક 5.3 : ઍસિડ / બેઈઝ અને તેના બફરની pHની સરખામણી

	કસનળીનો ક્રમાંક	પ્રણાલીનું સંઘટન (Composition)	pH પત્રનો રંગ	рН
1		પાણીમાં CH₃COOH		
2		NH₄OH (પાણીમાં NH₃)		
3		CH ₃ COOH + CH ₃ COONa		
4		NH ₄ OH + NH ₄ Cl		

પરિણામ

- ઍસિટિક ઍસિડની pH _____ છે. (a)
- એસિટિક એસિડની સોડિયમ એસિટેટ સાથેના બફરની pH, એસિટિક ઍસિડની pH કરતાં _____ છે. (b)
- એમોનિયા દ્રાવણની pH _____ છે. (c)
- એમોનિયા દ્રાવણની એમોનિયમ ક્લોરાઈડ સાથેના બફરની pH એમોનિયા દ્રાવણની pH કરતાં _____ છે. (d)
- સમાન આયન અસર ઍસિડ / બેઈઝના આયનીકરણને . (e)

સાવચેતી

- સમાન આયનની અસરના અભ્યાસ માટે ફક્ત નિર્બળ ઍસિડ / નિર્બળ બેઈઝ અને તેના ક્ષારનો પ્રયત્ન કરવો. (a)
- એમોનિયમ હાઈડ્રૉકસાઈની બોટલને સાવધાનીપૂર્વક પકડો. (b)
- દરેક કસનળીમાં સાર્વત્રિક સૂચકના ટીપાં સરખી સંખ્યામાં ઉમેરો. (c)
- pH પત્રને સલામત અને સૂકી જગ્યાએ રાખો.

ચર્ચાત્મક પ્રશ્નો

- સોડિયમ એસિટેટ (સોડિયમ ઈથેનોએટ) ને ઍસેટિક ઍસિડમાં ઉમેરતાં pH વધે છે, જ્યારે જલીય NH, ના દ્રાવણ (NH,OH)માં (i) NH₄Cl ઉમેરતાં pH ઘટે છે. આ અવલોકનોને તમે કેવી રીતે સમજાવશો ?
- પ્રણાલી 3 માટે CH, COONa ના યોગ્ય પ્રતિસ્થાપન (replacement) માટે અને પ્રણાલી 4 માટે NH, Cl ના યોગ્ય પ્રતિસ્થાપન (ii) સુચવો.
- ઉપર દર્શાવ્યા જેવા પ્રયોગો કરવા માટે લઈ શકાય તેવા નિર્બળ ઍસિડ અને તેના ક્ષાર તથા નિર્બળ બેઈઝ અને તેના ક્ષારની જોડ (iii) સૂચવો.
- ક્ષારના પૃથક્કરણમાં / મિશ્રણના પૃથક્કરણમાં એવી પરિસ્થિતિનો નિર્દેશ કરો જ્યાં સમાન આયનની અસરને કારણે pH માં ફેરફાર કરવામાં આવતો હોય.
- બફર દ્રાવણો કેવી રીતે pH ફેરફારનો પ્રતિકાર કરે છે ? યોગ્ય ઉદાહરણ સાથે સમજાવો. (v)

pH અને જલીય દ્રાવણોમાં pH ફેરફાર

પ્રયોગ 5.4

હેતુ

સાર્વત્રિક સૂચકનો ઉપયોગ કરીને પ્રબળ ઍસિડના પ્રબળ બેઈઝ સાથેના અનુમાપન દરમિયાન થતા pH ફેરફારનો અભ્યાસ કરવો.

સિધ્ધાંત

એવું ધારવામાં આવે છે કે પ્રબળ ઍસિડ અને પ્રબળ બેઈઝ દ્રાવણમાં સંપૂર્ણપણે આયનીકરણ પામેલા હોય છે. તટસ્થીકરણની પ્રક્રિયા દરમિયાન ઍસિડમાંથી મળતા H⁺ આયન બેઈઝ દ્વારા ઉત્પન્ન થયેલ OH⁻ સાથે સંયોજાય છે અને પાણી બનાવે છે. આથી, જ્યારે પ્રબળ એસિડનું દ્રાવશ પ્રબળ બેઈઝના દ્રાવશમાં ઉમેરવામાં આવે છે, ત્યારે દ્રાવશની pH બદલાય અથવા પ્રબળ બેઈઝના દ્રાવણમાં પ્રબળ ઍસિડનું દ્રાવણમાં ઉમેરવામાં આવે, તો દ્રાવશની pH બદલાય છે. જેમ અનુમાપન આગળ વધે છે, તેમ શરૂઆતમાં pH માં ધીમો ફેરફાર જણાય છે. પરંતુ સમતુલ્યતા બિંદુ (equivalence point)ની નજીકમાં દ્રાવણની pHમાં ખૂબ ઝડપી (મોટો) ફેરફાર થાય છે.

જરૂરી સામગ્રી

• બ્યુરેટ એક

• બીકર (250 mL) બે

કોનિકલ ફ્લાસ્ક (100 mL) એક

ડ્રોપર એક

pH ચાર્ટ એક

• હાઈડ્રૉકલોરિક ઍસિડ દ્રાવણ : 25 mL

(0.1 M)

• સોડિયમ હાઈડ્રૉકસાઈડ : 50 mL

દ્રાવણ (0.1 M)

સાર્વત્રિક સૂચક : જરૂરિયાત પ્રમાણે

પધ્ધતિ

- 100 mL કોનિકલ ફ્લાસ્કમાં 25 mL હાઈડ્રૉકલોરિક ઍસિડ દ્રાવણ (i) (0.1 M) લો.
- તેમાં સાર્વત્રિક સૂચકનાં પાંચ ટીપાં ઉમેરો. (ii)
- કોષ્ટક 5.4 માં દર્શાવ્યા પ્રમાણે સોડિયમ હાઈડ્રૉક્સાઈડ (0.1 M)નું દ્રાવણ (iii) બ્યુરેટમાંથી ઉમેરો.
- સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવણના દરેક ઉમેરણ બાદ ફ્લાસ્કમાંના દ્રાવણને બરાબર હલાવો. દરેક વખતે કોનિકલ ફ્લાસ્કમાંના રંગને pH ચાર્ટ સાથે સરખાવો અને pH શોધી કાઢો.
- તમારા અવલોકન કોષ્ટક 5.4 માં નોંધો. (v)
- pH વિરૂધ્ધ ઉમેરેલ સોડિયમ હાઈડ્રૉકસાઈડના કદનો આલેખ દોરો. (vi)

કોષ્ટક 5.4 : 25 mL HCl (0.1 M) ના NaOH (0.1 M) દ્રાવણ વડે તટસ્થીકરણ દરમિયાન pH ફેરફાર

અનુક્રમ	ઉમેરેલ NaOHના જથ્થાનું કદ (mL)	ફલાસ્કમાંના દ્રાવણમાં ઉમેરેલ NaOH દ્રાવણનું કુલ કદ (mL)	рН
1.	0	0	
2.	12.5	12.5	
3.	10.0	22.5	
4.	2.3	24.8	
5.	0.1	24.9	
6.	0.1	25.0	
7.	0.1	25.1	
8.	0.1	25.2	
9.	0.1	25.3	
10.	0.1	25.4	
11.	0.5	25.9	

સાવચેતી

- (a) સારા પરિણામો મેળવવા માટે પ્રબળ ઍસિડ અને પ્રબળ બેઈઝની પ્રક્રિયા કરવા માટે તેમની સરખી સાંદ્રતાવાળા દ્રાવણોથી પ્રયોગ કરો.
- (b) ઍસિડ અને બેઈઝની બોટલને સાવધાનીપૂર્વક પકડો.
- (c) સૂચકનું ઓછું પ્રમાણ વાપરો.

પરિણામ

માહિતીના આધારે તમારું પરિશામ લખો.

ચર્ચાત્મક પ્રશ્નો

- (i) પ્રબળ ઍસિડના પ્રબળ બેઈઝ સાથેના તટસ્થીકરણમાં તમે pH ફેરફારના કેવા વલણની આશા રાખશો ?
- (ii) નિર્બળ ઍસિડ (એસિટિક ઍસિડ)ની પ્રબળ બેઈઝ (સોડિયમ હાઈડ્રૉકસાઈડ) સાથેના તટસ્થીકરણ દરમિયાન તમે pH ફેરફારનું વલણ ઉપર પ્રમાણેનું સરખું જ હોવાની આશા રાખશો ?
- (iii) જો હાઈડ્રૉકલોરિક ઍસિડનું સોડિયમ હાઈડ્રૉકસાઈડ વડે તટસ્થીકરણ કરવામાં આવે, તો કયા pH ગાળા (range) દરમિયાન સૂચક રંગ ફેરફાર (પરિવર્તન) બતાવશે ?
- (iv) તટસ્થીકરણ પ્રક્રિયા માટે સૂચકની પસંદગીમાં pH ફેરફારનો અભ્યાસ કઈ રીતે મદદરૂપ થાય છે સમજાવો.

pH અને જલીય દ્રાવણોમાં pH ફેરફાર

પ્રયોગ 5.5

હેતુ

સોડિયમ કલોરાઈડ, ફેરિક કલોરાઈડ અને સોડિયમ કાર્બોનેટના દ્રાવણની pH નો અભ્યાસ કરવો.

સિધ્ધાંત

પ્રબળ ઍસિડ અને પ્રબળ બેઈઝના ક્ષાર તટસ્થ દ્રાવણ બનાવે છે, જ્યારે નિર્બળ ઍસિડ/ બેઈઝ અને પ્રબળ બેઈઝ / ઍસિડ સાથેના ક્ષાર અનુક્રમે બેઝિક અને ઍસિડિક હોય છે. નિર્બળ ઍસિડ / બેઈઝના પ્રબળ બેઈઝ / ઍસિડ પાણીમાં જળવિભાજન પામે છે. જ્યારે પ્રબળ ઍસિડ અને પ્રબળ બેઈઝના ક્ષાર પાણીમાં જળવિભાજન પામતાં નથી. તમે આનો અભ્યાસ તમારા રસાયણવિજ્ઞાનના પાઠ્યપુસ્તકમાં કરેલ છે.

જરૂરી સામગ્રી

ઉત્કલન નળી : ત્રણ

કસનળી : ત્રણ

ં કાચના ડ્રોપર : ત્રણ

• pH પત્ર / સાર્વત્રિક સૂચક : જરૂર પ્રમાણે

• 0.1 M NaCl દ્રાવણ : જરૂર પ્રમાણે

0.1 M FeCl, દ્રાવશ : જરૂર પ્રમાશે

• 0.1 M Na,CO, દ્રાવણ : જરૂર પ્રમાણે

પધ્ધતિ

- (i) ત્રણ ઉત્કલન નળી લો અને તેના પર A, B, C ચિહ્ન કરો.
- (ii) ઉત્કલન નળી A, B અને C માં અનુક્રમે NaCl, FeCl $_3$ અને Na $_2$ CO $_3$ દ્રાવશના 20 mL દ્રાવશ લો.
- (iii) pH પત્રના નાના ટુકડા કરો અને સ્વચ્છ ગ્લેઝ ટાઈલ પર પાથરી દો.
- (iv) પ્રયોગ 5.1 પ્રમાણે ઉત્કલન નળી A, B અને C ના દ્રાવણોના pHની પરખ કરો.
- (v) કસનળી સ્ટેન્ડમાં ત્રણ સ્વચ્છ કસનળી ગોઠવો.
- (vi) કસનળી પર 1, 2 અને 3 ચિહ્ન કરો.
- (vii) દરેક કસનળીમાં ઉત્કલન નળી Aનું 4 mL દ્રાવણ ઉમેરો.
- (viii) કસનળી 1, 2 અને 3 માં અનુક્રમે 5 mL, 10 mL અને 15 mL પાણી ઉમેરો.
- (ix) pH પત્ર અને સાર્વિત્રિક સૂચકની મદદ વડે કસનળી 1, 2 અને 3 માં ના દ્રાવણની pH નોંધો.
- (x) B અને C ઉત્કલન બિંદુના દ્રાવશો સાથે પ્રયોગનું પુનરાવર્તન કરો.
- (xi) કોષ્ટક 5.5 માં દર્શાવ્યા પ્રમાણે કોષ્ટક સ્વરૂપે તમારા પરિણામ નોંધો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

કોષ્ટક 5.5 : NaCl, FeCl, અને Na2CO, ની જુદી જુદી સાંદ્રતાવાળા દ્રાવણોની pH

		દ્રાવણની pH	
દ્રાવણ	કસનળી-1	કસનળી-2	કસનળી-3
NaCl			
FeCl ₃			
Na ₂ CO ₃			

પરિણામ

તમારા અવલોકનોના આધારે પરિશામો લખો.

સાવચેતી

- (a) તાજા બનાવેલા દ્રાવણોનો ઉપયોગ કરો.
- (b) ક્ષાર લીધા પછી બોટલને ખુલ્લી રાખશો નહિ.
- (c) દરેક દ્રાવણ માટે અલગ અને સ્વચ્છ કસનળીનો ઉપયોગ કરો.
- (d) pH પત્રને સલામત અને સૂકી જગ્યાએ (સ્થળે) મૂકો.

ચર્ચાત્મક પ્રશ્નો

- (i) FeCl_3 અને $\operatorname{Na_2CO_3}$ ના દ્રાવણ શા માટે તટસ્થ નથી ?
- (ii) શા માટે પ્રબળ ઍસિડ અને પ્રબળ બેઈઝના ક્ષાર જળવિભાજન પામતા નથી ? સમજાવો.
- (iii) ક્ષારના પૃથક્કરણમાં જળવિભાજન ઘટના કેવી રીતે ઉપયોગી છે ?
- (iv) ક્ષારના દ્રાવશના pH પર મંદનની શું અસર થાય છે ? તમારા પરિશામો ચકાસો અને સમજાવો.

એકમ-6 અનુમાપનીય પૃથક્કરણ (Titrimetric Analysis)

તમે એ બાબત જાણો છો કે પદાર્થનું પૃથક્કરણ રાસાયણિક સંઘટનના ગુણાત્મક અને જથ્થાત્મક (પરિમાણાત્મક) બંધારણના સ્થાપન માટે થાય છે. આમ, રાસાયણિક પૃથક્કરણને ગુણાત્મક પૃથક્કરણ અને જથ્થાત્મક પૃથક્કરણ તરીકે વર્ગીકૃત કરી શકાય. આ એકમમાં તમે દ્રાવણમાંના પદાર્થનું પ્રમાણ નક્કી કરવાનું શીખશો. દ્રાવણમાંના રાસાયણિક પદાર્થના નિર્ધારણ માટે સ્વીકારાયેલ પધ્ધતિના આધાર પર પૃથક્કરણની બે રીતો જેમ કે અનુમાપનીય (કદમાપક) પૃથક્કરણ અને ભારમાપક (પરિમાણાત્મક) પૃથક્કરણ છે. અનુમાપનીય પૃથક્કરણમાં માત્ર કદનું જ માપન કરવામાં આવે છે. જયારે ભારમાપક પૃથક્કરણમાં કદ ઉપરાંત દળના માપનનો સમાવેશ થાય છે.

અનુમાપનીય પૃથક્કરણમાં જ્ઞાત ચોક્કસ સાંદ્રતાવાળા દ્રાવણનો સમાવેશ થાય છે. જે પદાર્થના દ્રાવણના માપન કરેલા કદ સાથે જથ્થાત્મક રીતે પ્રક્રિયા માટે જરૂરી દ્રાવણનું કદ છે. ચોક્કસ જ્ઞાત સાંદ્રતાવાળા દ્રાવણને પ્રમાણિત દ્રાવણ કહે છે. અજ્ઞાત સાંદ્રતાવાળા દ્રાવણમાં ઓગાળેલા પદાર્થનું દળ પ્રમાણિત દ્રાવણના વપરાયેલા કદ પરથી ગણવામાં આવે છે. રાસાયણિક પ્રક્રિયાથી પ્રક્રિયા કરતાં પદાર્થોના સાપેક્ષ દળ પણ ગણી શકાય છે. જ્ઞાત સાંદ્રતાવાળા દ્રાવણને અનુમાપક (titrant) કહે છે અને જે પદાર્થનું અનુમાપન કરવામાં આવે છે, તેને અનુમાપિત (titrand) કહે છે.

અનુમાપનીય પૃથક્કરણમાં સામાન્ય રીતે પ્રમાણિત દ્રાવણ લાંબી અંકિત નળી જેને બ્યુરેટ કહે છે. તેના વડે ઉમેરવામાં આવે છે. પ્રમાણિત દ્રાવણને અજ્ઞાત સાંદ્રતાવાળા દ્રાવણમાં પ્રક્રિયા પૂર્ણ ન થાય ત્યાં સુધી ઉમેરતા રહેવું તેને અનુમાપન કહે છે. જે બિંદુએ પ્રક્રિયા પૂર્ણ થાય છે. તેને સમતુલ્ય બિંદુ અથવા સૈધ્ધાંતિક અથવા તત્ત્વયોગમિતિય અંતિમ બિંદુ કહે છે. દરેક વખતે પ્રમાણિત દ્રાવણને બ્યુરેટમાં લેવું શક્ય હોતું નથી. આને વિશે તમે આ એકમમાં હવે પછી સોડિયમ હાઈડ્રૉકસાઈડ અને ઑકઝેલિક ઍસિડના અનુમાપનમાં શીખશો.

6.1 અંતિમબિંદુની પરખ (Detection of End Point)

અંતિમબિંદુની પરખ પ્રક્રિયા મિશ્રણમાં જ થતાં ભૌતિક ફેરફાર અથવા સહાયક (auxiliary) પ્રક્રિયકના ઉમેરણથી જેને સૂચક કહેવામાં આવે છે, તેના આધારે કરવામાં આવે છે. વૈકલ્પિક રીતે બીજા કોઈ, ભૌતિક માપનનો ઉપયોગ પણ કરવામાં આવે છે. પ્રક્રિયા પૂર્ણ થવા પર સૂચક દેશ્ય ફેરફાર દર્શાવે છે. ઉદાહરણ તરીકે અનુમાપન થતાં દ્રાવણમાં રંગ પરિવર્તન અથવા રંગ ફેરફાર અથવા ધૂંધળાપણ (turbidity). આદર્શ અનુમાપનમાં દેશ્ય અંતિમબિંદુ તત્ત્વયોગમિતીય અથવા સૈધ્ધાંતિક અંતિમબિંદુ સાથે સુસંગત થાય છે. પરંતુ વાસ્તવિકતામાં સામાન્ય રીતે થોડો ઘણો નાનો તફાવત પડે છે આ અનુમાપન ભૂલ (ક્ષતિ) દર્શાવે છે.

સૂચક અને પ્રાયોગિક પરિસ્થિતિ એવા પસંદ કરવા જોઈએ કે દેશ્ય અંતિમબિંદુ અને સૈધ્ધાંતિક અંતિમબિંદુ વચ્ચેનો તફાવત નિમ્નતમ હોય.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

6.2 અનુમાપનીય પૃથક્કરણમાં પ્રક્રિયા માટે જરૂરિયાતો (Requirement for a Reaction in Titrimetric Analysis):

- (i) પદાર્થ જેનું પ્રમાણ (જથ્થો) અનુમાપનીય પૃથક્કરણથી નક્કી કરવાનું છે તે બીજા પ્રક્રિયક સાથે તત્ત્વયોગમિતિય પ્રમાણમાં સંપૂર્ણપણે અને ઝડપથી પ્રક્રિયા કરે તેવો હોવો જોઈએ.
- (ii) પ્રક્રિયા ઝડપી હોવી જોઈએ અને સમતુલ્યતા બિંદુએ દ્રાવણના ભૌતિક અથવા રાસાયણિક ગુણધર્મમાં ફેરફાર (alteration) હોવો જોઈએ. આને સૂચકની મદદ વડે અથવા પોટેન્શિયલ (વિભવ) તફાવત અથવા વીજપ્રવાહ વગેરેના માપનથી નક્કી કરી શકાય.

6.3 ઍસિડીમિતિ અને આલ્કલીમિતિ (Acidimetry and Alkalimetry):

અનુમાપનીય પૃથક્કરણ જુદા જુદા પ્રકારની પ્રક્રિયાઓ માટે કરી શકાય છે. આ એકમમાં તમે તટસ્થીકરણ પ્રક્રિયા વિશે અભ્યાસ કરશો. આ ઍસિડ અને બેઈઝના અનુમાપનો માટે ઍસિડના પ્રમાણિત દ્રાવણો (એસિડીમિતિ) અને બેઈઝના પ્રમાણિત દ્રાવણો (આલ્કલીમિતિ)નો ઉપયોગ થાય છે. અનુમાપનીય પૃથક્કરણ દ્વારા જથ્થાત્મક પરિમાપનમાં દ્રાવણની સાંદ્રતા મોલારિટીના પર્યાયમાં રજૂ કરાય છે. તે 1 લિટર દ્રાવણમાં દ્રાવ્યના મોલની સંખ્યા છે.

મોલારિટી,
$$\mathbf{M} = \frac{$$
 દ્રાવ્યના મોલની સંખ્યા $}{$ દ્રાવણનું કદ લિટરમાં

પ્રમાણિત દ્રાવણ

ચોક્કસ જ્ઞાત સાંદ્રતાવાળા દ્રાવણને પ્રમાણિત દ્રાવણ કહે છે. કોઈપણ પદાર્થ જે ઓરડાના તાપમાને સ્થાયી હોય અને જે દ્રાવકમાં ઓગાળ્યો હોય, તેની સાથે પ્રક્રિયા કરતો ન હોય, તેનું પ્રમાણિત દ્રાવણ બનાવવા માટે પદાર્થનું સીધું જ વજન કરી શકાય છે. આ દ્રાવણોનું વર્ણન અને બનાવટ નીચે આપેલા છે:

પ્રાથમિક અને દ્વિતીયક માનક

પ્રાથમિક માનક (standard) એવો પદાર્થ છે, જે પૂરતો શુધ્ધ છે અને તેમાં અશુધ્ધિઓનું કુલ પ્રમાણ 0.01 - 0.02 % થી વધુ ન હોવું જોઈએ. પ્રમાણિત દ્રાવણ બનાવવા માટે પ્રાથમિક માનકનું સીધું જ વજન કરીને તેને પાણીમાં (અથવા દ્રાવકમાં) ઓગાળી દ્રાવણનું ચોક્કસ કદ મેળવવામાં આવે છે. જે પદાર્થનો પ્રાથમિક માનક તરીકે ઉપયોગ કરવાનો છે. તેણે નીચેની જરૂરિયાતોને સંતોષવી જોઈએ :

- 1. તે સહેલાઈથી શુધ્ધ અને શુષ્ક સ્વરૂપમાં મળી આવવો જોઈએ.
- 2. તેમાં હવાની હાજરીમાં ફેરફાર થવો જોઈએ નહિ. એટલે કે તે ભેજગ્રાહી ન હોવો જોઈએ, હવાથી ઑક્સિડેશન ન પામવો જોઈએ અથવા વાતાવરણમાં હાજર વાયુઓ જેવા કે કાર્બન ડાયૉકસાઈડ વાયુ વડે અસર પામતો ન હોવો જોઈએ અથવા સ્ફટિક જળ ગુમાવતો ન હોવો જોઈએ. જેથી કરીને તેને સલામત રીતે રાખી શકાય.
- 3. તેમાં રહેલી અશુધ્ધિઓની પરખ બહુ સહેલી હોવી જોઈએ.
- 4. તેનું **સાપેક્ષ મોલર દળ** ઘશું ઊંચું હોવું જોઈએ. જેથી વજન કરવા દરમિયાન ભૂલો નહિવત્ હોય.
- 5. તેની બીજા પદાર્થ સાથેની પ્રક્રિયા ત્વરિત અને તત્ત્વયોગમિતિય હોવી જોઈએ.
- 6. પદાર્થ પાણીમાં ઝડપથી દ્રાવ્ય હોવો જોઈએ.

આદર્શ પ્રાથમિક માનક મેળવવો મુશ્કેલ છે. એટલા માટે પ્રાથમિક માનકની નજીક હોય તેવી લાક્ષણિકતાવાળા પદાર્થોનો સામાન્ય રીતે ઉપયોગ થાય છે.

અસ્થાયી જળયુક્ત ક્ષાર નિયમ પ્રમાણે પ્રાથમિક માનક તરીકે વાપરવા જોઈએ નહિ, તેમ છતાં સોડિયમ કાર્બોનેટ, સોડિયમ ટેટ્રાબોરેટ, પોટેશિયમ હાઈડ્રૉજન થેલેટ, ઓકઝેલિક ઍસિડ, ફેરસ એમોનિયમ સલ્ફેટ વગેરે પ્રાથમિક માનક તરીકે વાપરી શકાય છે. કારણ કે તે પૂરતા પ્રમાણમાં સ્થાયી હોય છે.

દ્વિતીયક માનકનું દ્રાવશ એવું દ્રાવશ છે, જેનો માનક તરીકે ઉપયોગ કરતાં પહેલાં તેની ચોક્કસ સાંદ્રતા પ્રાથમિક માનકના પ્રમાશિત દ્રાવશ સાથેના અનુમાપનથી નક્કી કરવામાં આવી હોય.

હિતીયક માનકનું સીધું વજન કરી, પ્રમાશિત દ્રાવશ બનાવવામાં ઉપયોગ કરી શકાય નહિ. સોડિયમ હાઈડ્રૉકસાઈડ અને પોટેશિયમ પરમેંગેનેટ દ્વિતીયક માનકના ઉદાહરશ છે.

અનુમાપનીય પૃથક્કરણ શરૂ કરતાં પહેલાં તમારે કેટલીક પ્રવિધિઓ જેવી કે રાસાયણિક તુલાથી વજન કરવું, પ્રમાણિત દ્રાવણ બનાવવું, બ્યુરેટ અને પિપેટ વાપરીને કદનું માપન કરવું વગેરેથી માહિતગાર થવું જોઈએ.

6.4 ઍસિડ-બેઇઝ અનુમાપનમાં સૂચક

(Indicators in Acid-Base Titration):

ઍસિડ-બેઈઝ સૂચક pH ફેરફાર સાથે સંવેદનશીલ હોય છે. મોટાભાગના ઍસિડ-બેઈઝ અનુમાપન માટે એ શક્ય છે કે સમતુલ્ય બિંદુની ખૂબ જ નજીકના pH મૂલ્યએ રંગ પરિવર્તન દર્શાવે છે. આપણે અહિંયા બે સૂચકોની ચર્ચા કરીશું. - ફિનોલ્ફથેલીન અને મિથાઈલ ઓરેન્જ.

ફિનોલ્ફથેલીન

ફિનોલ્ફથેલીન નિર્બળ ઍસિડ છે અને તેથી ઍસિડિક માધ્યમમાં વિયોજન પામતો નથી અને બિનઆયનીકરણ સ્વરૂપમાં રહે છે જે રંગવિહીન છે.

ફિનોલ્ફથેલીનના આયનીકરણ પામેલા અને બિનઆયનીકરણ સ્વરૂપો નીચે આપેલા છે :

આકૃતિ 6.1 : ઍસિડિક અને બેઝિક માધ્યમમાં ફિનોલ્ફથેલીન

67

ઍસિડિક માધ્યમમાં સંતુલન ડાબી તરફ રહે છે. આલ્કલીય માધ્યમમાં ફિનોલ્ફથેલીનનું આયનીકરણ સારા પ્રમાણમાં વધે છે. કારણ કે HPh માંથી મુક્ત થયેલો H^+ આયન આલ્કલીના OH^- આયન સાથે સંયોજાય છે, આથી Ph^- આયનની સાંદ્રતા દ્રાવણમાં વધે છે. જે દ્રાવણને ગુલાબી રંગ પ્રદાન કરે છે.

નિર્બળ ઍસિડ વિરૂદ્ધ પ્રબળ આલ્કલીના અનુમાપનમાં ફિનોલ્ફથેલીન સૌથી યોગ્ય સૂચક છે. આ પ્રમાણે હોવાનું કારણ એ છે, કે આલ્કલીનું છેલ્લું ટીપું પડે છે, ત્યારે દ્રાવણની pH એ ગાળામાં આવે છે, જે ગાળામાં ફિનોલ્ફથેલીન તીવ્ર રંગ પરિવર્તન દર્શાવે છે.

મિથાઈલ ઓરેન્જ :

મિથાઈલ ઓરેન્જ નિર્બળ બેઈઝ છે અને તે બિનઆયનીકરણ પામેલા સ્વરૂપમાં પીળો રંગ ધરાવે છે. મિથાઈલ ઓરેન્જનો સોડિયમ ક્ષાર નીચે પ્રમાણે દર્શાવી શકાય :

$$\vec{Na} \ \vec{O}_3 S - \vec{N} = \vec{N} - \vec{N} - \vec{N} CH_3$$

સૂચકમાંથી બનતા ઋણાયન સક્રિય સ્પીસીઝ છે, જે પ્રોટોનનો સ્વીકાર કરે છે (એટલે કે બ્રોન્સ્ટેડ-લોરી બેઈઝ તરીકે વર્તે છે) અને બેન્ઝેનોઈડ સ્વરૂપમાંથી કવીનોઈડ સ્વરૂપમાં ફેરવાય છે. કવીનોઈડ સ્વરૂપ રંગમાં વધારે ધેરો છે અને તેથી અંતિમ બિંદુએ થતા રંગ માટે જવાબદાર છે. આને નીચેની રીતે રજૂ કરેલ છે :

આકૃતિ 6.2 : મિથાઈલ ઓરેન્જનું બંધારણ

સૂચકની પસંદગી

પ્રબળ ઍસિડ અને નિર્બળ બેઈઝના અનુમાપનમાં મિથાઈલ ઓરેન્જની સૂચક તરીકે પસંદગી થાય છે. જયારે પ્રબળ બેઈઝ અને નિર્બળ ઍસિડનું અનુમાપન હોય, ત્યારે ફિનોલ્ફથેલીન સારો સૂચક છે. આ કિસ્સામાં બ્યુરેટમાંથી આલ્કલી ઉમેરવામાં આવે છે અને ઍસિડ અનુમાપન ફ્લાસ્કમાં લેવામાં આવે છે. અનુમાપન ફ્લાસ્કમાં દ્રાવણનો રંગ રંગવિહીનમાંથી ગુલાબી રંગમાં ફેરવાય છે. આ રંગ પરિવર્તન માણસની આંખ વડે સહેલાઈથી પારખી શકાય અવગમ્ય

અનુમાપનીય પૃથક્કરણ (કદમાપક પૃથક્કરણ)

(perceptible) થાય] છે. જો આપશે આલ્કલી અનુમાપન ફલાસ્કમાં લઈએ, તો રંગ ફેરફાર ગુલાબીમાંથી રંગવિહીન થશે અને રંગ પરિવર્તન નોંધવામાં ચોકસાઈ ઘણી ઓછી રહેશે. પ્રબળ ઍસિડ વિરૂદ્ધ પ્રબળ બેઈઝના અનુમાપનમાં બેમાંથી ગમે તે સૂચક વાપરી શકાય. નિર્બળ ઍસિડ વિરૂદ્ધ નિર્બળ બેઈઝના અનુમાપનમાં કોઈપણ સૂચક પ્રાપ્ય નથી.

પ્રયોગ 6.1

હેતુ

આપેલ સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવણની સાંદ્રતા (પ્રબળતા) ઑકઝેલિક ઍસિડના પ્રમાણિત દ્રાવણ સાથેના અનુમાપનથી નક્કી કરવી.

સિધ્ધાંત

પ્રબળ ઍસિડના પ્રબળ બેઈઝ સાથેના અનુમાપનમાં ઍસિડ અને બેઈઝના પ્રમાણ (જથ્થા) અંતિમબિંદુએ રાસાયશિક રીતે સમતુલ્ય બને છે અને આ રાસાયશિક પ્રક્રિયાને તટસ્થીકરશ પ્રક્રિયા કહે છે. અંતિમબિંદુની નજીકમાં દ્રાવશની pHમાં ઝડપી ફેરફાર થાય છે. જો અંતિમબિંદુ પછી પશ બેઈઝનું અથવા ઍસિડનું થોડું પશ પ્રમાશ ઉમેરવામાં આવે, તો દ્રાવશ અનુક્રમે બેઝિક અથવા ઍસિડિક બને છે. ઑકઝેલિક ઍસિડ (નિર્બળ ઍસિડ) અને સોડિયમ હાઈડ્રૉકસાઈડ (પ્રબળ બેઈઝ)ના અનુમાપનમાં નીચે મુજબ પ્રક્રિયા થાય છે.

COOH
$$|$$
 + 2NaOH \longrightarrow | + 2H₂O COONa $|$ COONa

ઑકઝેલિક ઍસિડ

સોડિયમ ઑકઝેલેટ

આ અનુમાપનમાં ફિનોલ્ફથેલીન (HPh) સૂચક તરીકે વપરાય છે. અજ્ઞાત દ્રાવણની સાંદ્રતા g/L માં ગણવામાં આવે છે. દ્રાવણની મોલારિટી નીચેનું સૂત્ર વાપરીને ગણી શકાય છે.

$$a_1 M_1 V_1 = a_2 M_2 V_2$$
 (4)

જ્યાં, \mathbf{a}_1 , \mathbf{M}_1 અને \mathbf{V}_1 અનુક્રમે વપરાયેલ ઍસિડની બેઝિકતા, મોલારિટી અને કદ છે તથા \mathbf{a}_2 , \mathbf{M}_2 અને \mathbf{V}_2 અનુમાપનમાં ઉપયોગમાં લેવાયેલ બેઈઝની અનુક્રમે ઍસિડિકતા, મોલારિટી અને કદ છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી

 બ્યુરેટ (50 mL) એક

પિપેટ (10 mL) એક

કોનિકલ ફ્લાસ્ક (100 mL) એક

બ્યુરેટ સ્ટેન્ડ એક

ગળણી એક

સફેદ ગ્લેઝટાઈલ એક

એક માપક ફલાસ્ક (100 mL)

ઑકઝેલિક ઍસિડ જરૂર પ્રમાણે

સોડિયમ હાઈડ્રૉકસાઈડ : જરૂર પ્રમાણે

ફિનોલ્ફથેલીન સૂચક : જરૂર પ્રમાશે

પધ્ધતિ

ઑકઝેલિક ઍસિડનું 0.1 M પ્રમાણિત દ્રાવણ બનાવવું. પ્રયોગ 2.1 માં વર્ણન કરેલ પધ્ધતિને અનુસરો.

- બ્યુરેટને સારી રીતે સાફ કરો, તેને નિસ્યંદિત પાણી વડે ધુઓ, અને છેવટે (i) સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવશ વડે વીંછળો. (હંમેશા બ્યુરેટ (આકૃતિ 2.17) ને જે દ્રાવશ તેમાં લેવાનું હોય, તેના વડે વીંછળો). બ્યુરેટ સ્ટેન્ડમાં બ્યુરેટને કલેમ્પ વડે સીધી ભરાવો.
- બ્યુરેટને ગળણી મારફતે શૂન્ય આંકથી ઉપર સુધી સોડિયમ હાઈડ્રૉકસાઈડ (ii) દ્રાવણ વડે ભરી દો.
- બ્યુરેટના નોઝલમાં (નાળચામાં) હવાથી રોકાયેલ જગ્યા બ્યુરેટ (iii) નોઝલમાંથી દ્રાવણને બળપૂર્વક પસાર કરી દૂર કરો.
- બ્યુરેટનું પ્રારંભિક વાંચન કરતાં પહેલાં ગળણીને દૂર કરો. વળી વાંચન (iv) નોંધતી વખતે જુઓ કે પ્રવાહીનું ટીપું બ્યુરેટના નોઝલ પર લટકતું નથી.
- આંખને દ્રાવશની વક્રસપાટીની (meniscus) સપાટીએ રાખીને પ્રારંભિક (v) વાંચન આંક નોંધો.
- 10 mL ઑકઝેલિક ઍસિડને પિપેટ વડે ધોયેલા અને શુષ્ક કરેલા કોનિકલ (vi) ફ્લાસ્કમાં લો. હંમેશા પિપેટને પહેલાં પાણી વડે અને પછી જે દ્રાવણ પિપેટ વડે લેવાનું હોય તે દ્રાવશ વડે દ્રાવશ લેતાં પહેલાં વીંછળો (આકૃતિ 2.21).
- કોનિકલ ફ્લાસ્કમાં 1-2 ટીપાં ફિનોલ્ફ્થેલીન સૂચક ઉમેરો. આકૃતિ 6.3 માં દર્શાવ્યા પ્રમાણે ફ્લાસ્કને ગ્લેઝટાઈલ પર મૂકો ઍસિડનું સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવણ સાથે જ્યાં સુધી આછો કાયમી ગુલાબી રંગ મળે નહિ, ત્યાં સુધી અનુમાપન કરો. સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવણ ઓછા પ્રમાણમાં શરૂઆતમાં ઉમેરો અને ત્યારબાદ ટીપે ટીપે ઉમેરો.

અનુમાપનીય પૃથક્કરણ (કદમાપક પૃથક્કરણ)

નોંધ:
• પ્રવાહીના વહનને અંગૂઠો અને બે આંગળીની મદદથી સ્ટોપ કોકની આજુબાજુ થોડાક અંદર તરફના દબાણ સાથે ગોઠવો જેથી પ્રવાહીનું લીકેજ થાય નહિ.
• અનુમાપન દરમિયાન પ્રવાહીને હલાવતા રહો.

ડાબા હાથ વડે પ્રવાહીનું

વહન ગોઠવવું

ગ્લેઝટાઈલ

આકૃતિ 6.3 : દ્રાવણનું અનુમાપન

જમણા હાથ વડે

પ્રવાહીનું વહન ગોઠવવું.

ગ્લેઝટાઈલ

(viii) બ્યુરેટમાં ફરીથી દ્રાવણની નીચેની વક્કસપાટી વાંચો અને અંતિમ વાંચન આંક નોંધો.

પ્રતિલંબન કાર્ડ

દ્રાવશ - B

દ્રાવશ - A

ગ્લેઝટાઈલ

(ix) જ્યાં સુધી ત્રણ સુસંગત (Concordant) વાંચન આંક મળે નહિ ત્યાં સુધી પધ્ધતિનું પુનરાવર્તન કરો. આ તમારા વાંચન આંક કોષ્ટક 6.1 પ્રમાણે નોંધો.

કોષ્ટક 6.1 : સોડિયમ હાઈડ્રૉકસાઈડ વિરૂધ્ધ ઑક્ઝેલિક ઍસિડ દ્રાવણનું અનુમાપન

અનુક્રમ	દરેક વખતે કોનિકલ ફ્લાસ્કમાં લીધેલ ઑકઝેલિક ઍસિડનું કદ V _ı mL	બ્યુરેટ વાંચ પ્રારંભિક આંક (x)	ાન આંક અંતિમ આંક (y)	વપરાયેલ સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવણનું કદ $V_2 \mathrm{mL} = (\mathrm{y-x}) \mathrm{mL}$	સુસંગત વાંચન આંક mLમાં

71

ગણતરી

NaOH દ્વાવણની મોલારિટી નીચેના સમીકરણથી ગણી શકાય.

ઑકઝેલિક ઍસિડ

સોડિયમ હાઈડ્રૉકસાઈડ

 $a_1 M_1 V_1$

 $a_2 M_2 V_2$

જ્યાં, M_1 અને V_1 અનુક્રમે ઑકઝેલિક ઍસિડ દ્રાવણની મોલારિટી અને કદ છે.

 \mathbf{M}_{γ} અને \mathbf{V}_{γ} સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવણની મોલારિટી અને કદ છે.

 a_1 અને a_2 અનુક્રમે ઑકઝેલિક ઍસિડની બેઝિકતા અને સોડિયમ હાઈડ્રોકસાઈડની ઍસિડિકતા છે આ કિસ્સામાં $a_1=2$ અને $a_2=1$.

ઑકઝેલિક ઍસિડ $(COOH)_2 \cdot 2H_2O$ નું મોલર દળ = 126 g mol^{-1} અને સોડિયમ હાઈડ્રૉકસાઈડ (NaOH) નું મોલર દળ = 40 g mol^{-1} .

સોડિયમ હાઇડ્રૉકસાઈડ દ્રાવણની સાંદ્રતા g/L માં નીચે આપેલા સમીકરણની મદદથી ગણો.

સાંદ્રતા (પ્રબળતા) g/L માં = મોલારિટી 🗙 મોલર દળ

પરિણામ

NaOH દ્રાવણની સાંદ્રતા _____ g/L

સાવચેતી

- (a) બ્યુરેટને તેમાં લેવાના દ્રાવણ વડે જ હંમેશા વીંછળો.
- (b) જો હવાને લીધે જગ્યા હોય, તો બ્યુરેટમાંથી અનુમાપન કરતાં પહેલાં દૂર કરો. એ પણ ખાત્રી કરો કે બ્યુરેટનું નોઝલ દ્રાવણથી ભરાયેલું છે.
- (c) બ્યુરેટના આંકનું વાંચન કરતાં પહેલાં ગળણી દૂર કરવાનું કદી ભૂલશો નહિ અને એની પણ ખાતરી કરશો કે આ સમયે નોઝલમાં દ્રાવણનું ટીપું લટકતું નથી.
- (d) બધા જ પારદર્શક દ્રાવણો માટે નીચેની વક્રસપાટી વાંચશો અને રંગીન દ્રાવણો માટે ઉપરની વક્રસપાટી વાંચશો.
- (e) વાંચન નોંધતી વખતે આંખને હંમેશા વક્રસપાટીની સપાટી સાથે સમતલ રાખશો.
- (f) પિપેટને કદી પણ બલ્બની જગ્યાએથી પકડશો નહિ.
- (g) તૂટેલા નોઝલવાળી બ્યુરેટ કે પિપેટનો કદાપી પણ ઉપયોગ કરશો નહિ.
- (h) પ્રબળ ઍસિડ કે બેઈઝના દ્રાવણને પિપેટ વડે કદીપણ ચૂસશો નહિ.
- (i) દ્રાવણ ચૂસો ત્યારે પિપેટનો નીચેનો ભાગ હંમેશા પ્રવાહીમાં ડૂબાડેલો રાખશો.
- (j) પિપેટની જેટના છેડામાંથી દ્રાવણનું છેલ્લું ટીપું ફૂંક મારીને ફલાસ્કમાં લેશો નહિ.
- (k) દ્રાવણની સાંદ્રતાની (પ્રબળતા) દશાંશના ચાર સ્થાન સુધી ગણતરી કરો.

અનુમાપનીય પૃથક્કરણ (કદમાપક પૃથક્કરણ)

ચર્ચાત્મક પ્રશ્નો

- (i) શા માટે બ્યુરેટ અને પિપેટને તેમાં ભરવાના દ્રાવણ વડે વીંછળવામાં આવે છે ?
- (ii) સૂચક શું છે ? ઑકઝેલિક ઍસિડ વિરૂદ્ધ સોડિયમ હાઈડ્રૉકસાઈડના અનુમાપનમાં કયું સૂચક વપરાય છે ? બીજો કોઈ સૂચક વાપરી આ અનુમાપન કરી શકાય ?
- (iii) શા માટે પારદર્શક દ્રાવણોના કિસ્સામાં દ્રાવણની નીચેની વક્રસપાટી અને ઘેરા રંગના દ્રાવણોના કિસ્સામાં દ્રાવણની ઉપરની વક્રસપાટી વાંચવી જોઈએ ?
- (iv) 'અંતિમબિંદુ' પર્યાય સમજાવો.
- (v) 1.0 M દ્રાવણ એટલે તમે શું સમજો છો ?
- (vi) શા માટે પિપેટમાંથી દ્રાવણનું છેલ્લું ટીપું ફૂંક મારીને લેવું જોઈએ નહિ ?
- (vii) ઍસિડની બેઝિકતા અને બેઈઝની ઍસિડિકતા સમજાવો.
- (viii) NaOH વિરુદ્ધ HCl ના અનુમાપનમાં ફિનોલ્ફ્થેલીન અને મિથાઈલ ઓરેન્જ બન્ને યોગ્ય સૂચકો છે. શા માટે ?
- (ix) 'સુસંગત વાંચન આંક' પર્યાયનો અર્થ શું છે ?
- (x) ઑકઝેલિક ઍસિડ દ્રાવણ બ્યુરેટમાં અને સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવણ અનુમાપન ફ્લાસ્કમાં લઈ શકાય ? આ પ્રમાણે કરવામાં કોઈ મર્યાદાઓ સમાયેલી હોય, તો નિર્દેશ કરો.

આ પણ જાણો

સંપૂર્શ તટસ્થીકરશ ત્યારે જ શક્ય છે જ્યારે આલ્કલીનું પ્રમાશ (જથ્થો) ઍસિડના પ્રમાશ (જથ્થાના) ને સમતુલ્ય હોય. આથી, અંતિમબિંદુએ ઍસિડનું સમતુલ્ય દળ દ્રાવકના \mathbf{V}_1 કદમાં ઓગાળેલ હોય તે અને બેઈઝનું સમતુલ્યદળ દ્રાવકના \mathbf{V}_2 કદમાં ઓગાળેલ હોય તે બન્ને સરખા થવા જોઈએ. ધારો કે \mathbf{N}_1 અને \mathbf{N}_2 અનુક્રમે ઍસિડ અને બેઈઝના પ્રતિલિટરમાં ઓગાળેલા સમતુલ્ય દળ છે તો, $\mathbf{N}_1\mathbf{V}_1=\mathbf{N}_2\mathbf{V}_2$ (i)

ઍસિડનું અને બેઈઝનું સમતુલ્ય દળ નીચેના સમીકરણથી દર્શાવી શકાય.

ઍસિડનું સમતુલ્ય દળ =
$$\frac{\text{મોલર દળ}}{\text{બેઝિકતા}}$$
 (ii) બેઈઝનું સમતુલ્ય દળ = $\frac{\text{મોલર દળ}}{\text{ઍસિડિકતા}}$ (iii)

દ્રાવ્યના ગ્રામ સમતુલ્ય દળની જે સંખ્યા એક લિટર દ્રાવશમાં ઓગાળેલ તે દ્રાવશની સપ્રમાશતા (Normality) છે. ઍસિડ અને બેઈઝ માટે

સપ્રમાણતા (N) =
$$\frac{$$
પ્રામ સમતુલ્ય દળની સંખ્યા $}{$ દ્રાવણનું કદ લિટરમાં (V) $}=\frac{w \ / \$ સમતુલ્ય દળ $}{$ દ્રાવણનું લિટરમાં કદ (V) $}-\dots$ (iv)

જ્યાં w = પદાર્થનું દળ ગ્રામમાં

સપ્રમાણતા અને મોલારિટી વચ્ચેનો સંબંધ

સપ્રમાણતા (N) ની વ્યાખ્યા પરથી (સમીકરણ (iv))

સમતુલ્ય દળ =
$$\frac{w}{N \times V}$$
 (v)

જો ઍસિડિકતા અથવા બેઝિકતા 'a' હોય, તો સમતુલ્ય દળની વ્યાખ્યા પ્રમાણે :

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સમતુલ્ય દળ =
$$\frac{\text{મોલર દળ}}{2}$$
 (vi)

સમીકરણ (v) અને (vi) ઉપરથી લખી શકીએ કે

$$\frac{w}{N \times V} = \frac{\text{ther so}}{a}$$

અથવા
$$N = \frac{a(w \mid \text{મોલર દળ})}{V}$$

પરંતુ,
$$\frac{w \ / \ \text{મોલર દળ}}{V} = \text{મોલારિટી M છે.}$$

સમીકરણ (vii) સપ્રમાણતા અને મોલારિટી વચ્ચેના સંબંધનું સમીકરણ છે.

સમીકરણ (vii) ને સમીકરણ (i) માં મૂકતા
$$a_1 M_1 V_1 = a_2 M_2 V_2$$
 (viii)

જયાં, \mathbf{a}_1 અને \mathbf{a}_2 અનુક્રમે ઍસિડ અને બેઈઝની બેઝિકતા અને ઍસિડિકતા છે તથા \mathbf{M}_1 અને \mathbf{M}_2 અનુક્રમે ઍસિડ અને બેઈઝના મોલર દળ છે. આથી, આપણે જોઈ શકીએ છીએ કે સમીકરણ (i) નો ઉપયોગ દ્રાવણની પ્રબળતા ગણવા માટે કરી શકીએ. સમીકરણ (viii) નો ઉપયોગ મંદનથી દ્રાવણ બનાવવામાં પણ કરી શકાય. એક જ પદાર્થના દ્રાવણો માટે $\mathbf{a}_1 = \mathbf{a}_2$. આથી સમીકરણ (viii) નો દ્રાવણના મંદન માટે ઉપયોગ કરી શકાય.

$$M_1V_1 = M_2V_2$$
 (ix)

આથી, M_1 મોલારિટીવાળા દ્રાવશમાંથી M_2 મોલારિટીવાળા દ્રાવશનું V_2 કદ મેળવવા માટે મંદન માટે જરૂરી મોલારિટી M_1 દ્રાવશના કદ V_1 સમીકરણ (ix) પરથી ગણી શકાય. દ્રાવકનું (V_2 - V_1) કદ M_1 મોલારિટીવાળા દ્રાવશના કદ V_1 માં ઉમેરવાની જરૂર પડશે.

પ્રયોગ 6.2

હેતુ

સોડિયમ કાર્બોનેટનું 0.1 M પ્રમાશિત દ્રાવશ બનાવવું.

સિધ્ધાંત

સોડિયમ કાર્બોનેટની લાક્ષણિકતા પ્રાથમિક માનકની ઘણી જ નજીક છે. તેથી તેનું પ્રમાણિત દ્રાવણ સીધું જ વજન કરીને બનાવી શકાય છે.

 $0.1~{\rm M~Na_2CO_3}$ દ્રાવણ બનાવવા માટે $10.6000~{\rm g}$ સોડિયમ કાર્બોનેટ પ્રતિ લિટર દ્રાવણમાં ઓગાળવો જોઈએ (સોડિયમ કાર્બોનેટનું મોલર દળ $106~{\rm g~mol^{-1}}$ છે).

આથી, $100 \text{ mL} \ 0.1 \text{ M Na}_2\text{CO}_3$ દ્રાવશ બનાવવા માટે 1.0600 g સોડિયમ કાર્બોનેટ પાણીના અલ્પતમ જથ્થામાં ઓગાળવામાં આવે અને પછી દ્રાવશનું પાણી ઉમેરી મંદન કરી અને બરોબર 100 mL દ્રાવશ બનાવો.

અનુમાપનીય પૃથક્કરણ (કદમાપક પૃથક્કરણ)

જરૂરી સામગ્રી

માપક ફલાસ્ક (100 mL) : એક

• વૉચ ગ્લાસ : એક

• ગળણી : એક

• વૉશ બોટલ : એક

• સોડિયમ કાર્બોનેટ : જરૂર પ્રમાણે

પધ્ધતિ

પ્રયોગ 2.1 પ્રમાણેની પધ્ધતિને અનુસરો.

પ્રયોગ 6.3

હેતુ

આપેલ મંદ હાઈડ્રૉકલોરિક ઍસિડ દ્રાવણની પ્રબળતા (સાંદ્રતા) સોડિયમ કાર્બોનેટના પ્રમાણિત દ્રાવણ સાથેના અનુમાપન દ્વારા નક્કી કરવું.

સિધ્ધાંત

હાઈડ્રોકલોરિક ઍસિડની પ્રબળતા (સાંદ્રતા) તેને સોડિયમ કાર્બોનેટના પ્રમાશિત દ્રાવશ સાથે અનુમાપન કરીને નક્કી કરી શકાય. નીચેની પ્રક્રિયા થાય છે :

$$Na_2CO_3 + 2HCI \rightarrow 2 NaCl + CO_2 + H_2O$$

આ અનુમાપનમાં મિથાઈલ ઓરેન્જ - નિર્બળ બેઈઝ (બિનઆયનીકરણ સ્વરૂપમાં પીળો) નો સૂચક તરીકે ઉપયોગ થાય છે.

આ પ્રયોગમાં અનુમાપન સામાન્ય માર્ગને અનુસરે છે એટલે કે ઍસિડના ઉમેરણથી પ્રાપ્ત થતો પ્રોટોન પ્રથમ સોડિયમ કાર્બોનેટ દ્રાવણનું તટસ્થીકરણ કરે છે. જ્યારે બધા જ સોડિયમ કાર્બોનેટનું તટસ્થીકરણ થઈ જાય છે, ત્યારે બ્યુરેટમાંથી ઉમેરેલા ઍસિડનું છેલ્લું ટીપું ગુલાબી લાલ રંગનો ફેરફાર દર્શાવે છે, જે અંતિમબિંદુ છે.

અજ્ઞાત દ્રાવણની સાંદ્રતા (પ્રબળતા) g/L માં ગણવામાં આવે છે. તેને દ્રાવણની મોલારિટી પરથી ગણવામાં આવે છે. અહીંયા, મોલારિટી સમીકરણ નીચે પ્રમાણે લખી શકાય :

જયાં, $\mathbf{a_1}$ અને $\mathbf{a_2}$ અનુક્રમે આલ્કલી અને ઍસિડની ઍસિડિકતા તથા બેઝિકતા છે. $\mathbf{M_1}$ અને $\mathbf{M_2}$ અનુક્રમે મોલારિટી છે. $\mathbf{V_1}$ અને $\mathbf{V_2}$ અનુક્રમે બેઈઝ અને ઍસિડના કદ છે, જેને એકબીજાનું તટસ્થીકરણ કરવા ઉપયોગમાં લેવાયું હતું.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી

• બ્યુરેટ (50 mL) : એક

પિપેટ (10 mL) : એક

કોનિકલ ફલાસ્ક (100 mL) : એક

• બ્યુરેટ સ્ટેન્ડ : એક

• ગળણી : એક

• ગ્લેઝટાઈલ (સફેદ) : એક

• માપક ફ્લાસ્ક (100 mL) : એક

હાઈડ્રૉકલોરિક ઍસિડ : જરૂર પ્રમાણે

• સોડિયમ કાર્બોનેટ : જરૂર પ્રમાણે

• મિથાઈલ ઓરેન્જ દ્રાવણ : જરૂર પ્રમાણે

પધ્ધતિ

(A) સોડિયમ કાર્બોનેટનું 0.1 M પ્રમાણિત દ્રાવણ બનાવવું. પ્રયોગ 2.1 માં વર્શન કરેલ પધ્ધતિ અનુસરો.

(B) હાઈડ્રૉકલોરિક ઍસિડ અને પ્રમાણિત સોડિયમ કાર્બોનેટ દ્રાવણનું અનુમાપન પ્રયોગ 6.1 માં આપેલ પધ્ધતિને અનુસરો.

આ કિસ્સામાં હાઈડ્રૉકલોરિક ઍસિડ બ્યુરેટમાં લેવામાં આવે છે અને સોડિયમ કાર્બોનેટ દ્રાવણને કોનિકલ ફ્લાસ્કમાં લેવામાં આવે છે. મિથાઈલ ઑરેન્જ સૂચક તરીકે વપરાય છે. અંતિમ બિંદુએ રંગ ફેરફાર પીળામાંથી આછો ગુલાબી - લાલ હશે. તમારા અવલોકનો કોષ્ટક 6.2 માં નોંધો.

કોષ્ટક 6.2 : હાઈડ્રૉકલોરિક ઍસિડનું પ્રમાણિત સોડિયમ કાર્બોનેટ દ્રાવણ સાથે અનુમાપન

અનુક્રમ	દરેક વખતે કોનિકલ ફ્લાસ્કમાં લીધેલ Na¸CO¸ દ્રાવણનું કદ V¸ mL માં	બ્યુરેટ વાંચ પ્રારંભિક આંક (x)	યન આંક અંતિમ આંક (y)	વપરાયેલ HCI દ્રાવણનું કદ \mathbf{V}_2 mL = (y-x) mL	સુસંગત વાંચન આંક mLમાં

અનુમાપનીય પૃથક્કરણ (કદમાપક પૃથક્કરણ)

ગણતરી

નીચેનું સમીકરણ વાપરીને HCI દ્રાવણની પ્રબળતા (સાંદ્રતા) ગણો.

HCl દ્રાવશ

$$a_1 M_1 V_1$$

$$\mathbf{a}_{2} \mathbf{M}_{2} \mathbf{V}_{2}$$

જ્યાં M_1 અને V_1 અનુક્રમે સોડિયમ કાર્બોનેટ દ્રાવણની મોલારિટી અને કદ છે અને a_1 એક મોલ બેઈઝમાંથી મળતા $OH^-(aq)$ આયનના મોલની સંખ્યા છે (એટલે કે Na_2CO_1 દ્રાવણની ઍસિડિકતા).

$$\therefore a_1 = 2$$

 \mathbf{M}_2 અને \mathbf{V}_2 અનુક્રમે હાઈડ્રૉકલોરિક ઍસિડ દ્રાવણની મોલારિટી અને કદ છે.

 a_{γ} એક મોલ ઍસિડમાંથી મળતા H^+ (aq) આયનની મોલ સંખ્યા છે (એટલે કે HClની બેઝિકતા).

$$\therefore a_2 = 1$$

Na,CO₃ નું મોલર દળ = 106 g mol^{-1} ; HCl નું મોલર દળ = 36.5 g mol^{-1}

∴ HCl દ્રાવણની સાંદ્રતા (પ્રબળતા) g/L માં = મોલારિટી × આણ્વીય દળ.

પરિણામ

આપેલ HCl દ્રાવણની સાંદ્રતા (પ્રબળતા) _____ g/L.

સાવચેતી

- (a) ઍસિડ અને બેઈઝ સાથે કાર્ય કરતાં સાવચેતી રાખવી.
- (b) હંમેશા બ્યુરેટ અને પિપેટને તેમના વડે લેવાના દ્રાવણો વડે વીંછળો.
- (c) અનુમાપન પહેલાં બ્યુરેટમાંથી હવાને લીધેની ખાલી જગ્યા દૂર કરો.
- (d) બ્યુરેટનું પ્રાથમિક વાંચન કરતાં પહેલાં ગળણી દૂર કરવાનું કદી પણ ભૂલશો નહિ અને ખાતરી કરો કે નોઝલના છેડે દ્રાવણનું ટીપું લટકતું નથી.
- (e) હંમેશા બધા જ પારદર્શક દ્રાવણ માટે નીચેની વક્રસપાટી વાંચો અને રંગીન દ્રાવણ માટે ઉપરની વક્રસપાટી વાંચો.
- (f) તૂટેલા નોઝલવાળી બ્યુરેટ કે પિપેટ કદીપણ વાપરશો નહિ.
- (g) પ્રબળ ઍસિડ અથવા આલ્કલીને પિપેટની મદદ વડે કદી પણ ચૂસશો નહિ. પિપેટ બલ્બનો ઉપયોગ કરો.
- (h) પ્રવાહી ચૂસો ત્યારે પિપેટનો નીચેનો છેડો દ્રાવણમાં ડૂબેલો રાખશો.
- (i) જ્યારે દ્રાવણને પિપેટમાંથી ફલાસ્કમાં લો, ત્યારે પિપેટની જેટમાંથી દ્રાવણનું છેલ્લું ટીંપું ફૂંક મારીને લેશો નહિ.
- (j) દ્રાવણની પ્રબળતાની ગણતરી દશાંશના ચાર સ્થાન સુધી કરો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

આ પણ જાણો

સોડિયમ હાઈડ્રૉકસાઈડ દ્રાવશને પ્રમાશિત કરવા માટે પોટેશિયમ હાઈડ્રૉજન થેલેટ પ્રાથમિક માનક છે. પોટેશિયમ હાઈડ્રૉજન થેલેટનું સૂત્ર $C_{\delta}H_{\delta}O_{\delta}K$ છે. તે એક બેઝિક ઍસિડ તરીકે વર્તે છે. સોડિયમ હાઈડ્રૉકસાઈડ, પોટેશિયમ હાઈડ્રૉજન થેલેટ સાથે નીચેના સમીકરશ પ્રમાશે પ્રક્રિયા કરે છે.

COOH
$$(aq) + NaOH(aq) \longrightarrow (aq) + H_2O(l)$$

$$COO^-K^+$$

$$COO^-K^+$$

આ અનુમાપનમાં ફિનોલ્ફથેલીન સૂચક તરીકે વપરાય છે.

ચર્ચાત્મક પ્રશ્નો

- (i) સોડિયમ કાર્બોનેટનું હાઈડ્રૉકલોરિક ઍસિડ વડે અનુમાપનમાં કયો સૂચક વપરાય છે ? અને અંતિમબિંદુએ રંગ પરિવર્તન કેવું હોય છે ?
- (ii) તમે 250 mL 0.05 M સોડિયમ કાર્બોનેટ દ્રાવણ કેવી રીતે બનાવશો ?
- (iii) સોડિયમ કાર્બોનેટ ક્ષાર છે તેમ છતાં પણ તેનું જલીય દ્રાવણ નિર્બળ આલ્કલાઈન દ્રાવણ છે. સમજાવો શા માટે ?
- (iv) સોડિયમ કાર્બોનેટ દ્રાવણની એસિડિકતા તમે કેવી રીતે નક્કી કરશો ?
- (v) શા માટે મિથાઈલ ઓરેન્જ આર્હેનિયસ બેઈઝ નથી ?
- (vi) તમે Na,CO, અને NaHCO, ના મિશ્રણના દ્રાવણનું HCI સામે કેવી રીતે અનુમાપન કરશો ?
- (vii) અંતિમ બિંદુ અને સમતુલ્યબિંદુ વચ્ચે શું તફાવત છે ?
- (viii) તમે HCl, HNO, અને H,SO, ના પ્રમાશિત દ્રાવશ સીધા જ બનાવી શકશો ?

પૃથક્કરણનો હંમેશા એવો અર્થ નથી થતો કે પદાર્થને તેના અંતિમ ઘટકોમાં તોડી નાંખવો. પદાર્થનો સ્વભાવ શોધી કાઢવો અને તેના ઘટકોની ઓળખાણને પણ પૃથક્કરણ તરીકે ઓળખવામાં આવે છે, અને તેને ગુણાત્મક પૃથક્કરણ કહે છે. અકાર્બનિક ક્ષારોનું ગુણાત્મક પૃથક્કરણ એટલે ક્ષારમાં અથવા ક્ષારના મિશ્રણમાં રહેલા ધનાયન અને ઋશાયનની ઓળખ. અકાર્બનિક ક્ષાર ઍસિડનું બેઈઝ વડે સંપૂર્ણ અથવા આંશિક તટસ્થીકરણથી અથવા તેની ઊલટી રીતે મેળવી શકાય છે. ક્ષારની બનાવટમાં ઍસિડ તરફથી મળતા ભાગને ઋશાયન કહે છે અને બેઈઝ તરફથી મળતા ભાગને ધનાયન કહે છે. દા.ત., $\mathrm{CuSO_4}$ અને NaCl ક્ષારમાં $\mathrm{Cu^{2+}}$ અને $\mathrm{Na^+}$ આયનો ધનાયન છે અને SO_4^{2-} અને CI^- આયનો ઋશાયન છે. ગુશાત્મક પૃથક્કરણ જુદા જુદા માપના આધારે કરવામાં આવે છે. આમાં લેવાયેલા પદાર્થના જથ્થા અલગ - અલગ હોય છે. સ્થૂળ (macro) પૃથક્કરણમાં 0.1 થી 0.5 g પદાર્થ અને આશરે 20 mL જેટલું દ્રાવણ વપરાય છે. અર્ધસૂક્ષ્મ (semimicro) પૃથક્કરણમાં 0.05 g પદાર્થ અને 1 mL દ્રાવણની જરૂર પડે છે, જ્યારે સૂક્ષ્મ (micro) પૃથક્કરણમાં જરૂરી જથ્થો ઘણો ઓછો હોય છે. ગુણાત્મક પૃથક્કરણ એવી પ્રક્રિયાઓ દ્વારા કરવામાં આવે છે, કે જે આપણી દેશ્ય અને વાસ સંદર્ભી જ્ઞાનેન્દ્રિયોને સરળતાથી અવગત કરે. નીચે જણાવેલ પ્રક્રિયાઓનો તેમાં સમાવેશ થાય છે.

- (a) અવક્ષેપનું નીપજવું.
- (b) રંગમાં ફેરફાર.
- (c) વાયુની ઉત્પત્તિ વગેરે. અકાર્બનિક ક્ષારનાં પધ્ધતિસર પૂથક્કરણમાં નીચેના સોપાનોનો સમાવેશ થાય છે.
- (i) ઘનક્ષાર અને તેના દ્રાવણની પ્રાથમિક કસોટી.
- (ii) દ્રાવણમાં થતી પ્રક્રિયાઓ (ભીની કસોટીઓ) દ્વારા ઋણાયનોનું નિર્ધારણ અને નિર્ણાયક કસોટીઓ.
- (iii) દ્રાવણમાં થતી પ્રક્રિયાઓ (ભીની કસોટીઓ) દ્વારા ધનાયનોનું નિર્ધારણ અને નિર્ણાયક કસોટીઓ.

ક્ષારની પ્રાથમિક કસોટીઓ અગત્યની માહિતી પૂરી પાડે છે, જે આગળના પૃથક્કરણને સરળ બનાવે છે. જો કે આ કસોટીઓ પરિણામી હોતી નથી, પરંતુ તે કેટલીક વખત કેટલાક ધનાયન અથવા ઋણાયનની હાજરી માટે અગત્યની કડી (clue) આપે છે. આ કસોટીઓ 10 - 15 મિનિટમાં કરી શકાય છે. આમાં ક્ષારનો સામાન્ય દેખાવ અને ભૌતિક ગુણધર્મો જેવા કે રંગ, વાસ, દ્રાવ્યતા વગેરેની નોંધનો સમાવેશ થાય છે. આને સૂકી કસોટીઓ કહે છે.

શુષ્ક ક્ષારને ગરમ કરવો, ફૂંકણી કસોટી, જ્યોત કસોટી, બોરેકસ મણકા કસોટી, સોડિયમ કાર્બોનેટ મણકા કસોટી, કોલસા પોલાણ કસોટી વગેરેનો સૂકી કસોટીઓમાં સમાવેશ થાય છે. આ કસોટીઓ આ એકમમાં આપેલ છે.

પાણીમાં ક્ષારની દ્રાવ્યતા અને જલીય દ્રાવણની pH ક્ષારમાં હાજર આયનોના સ્વભાવ અંગેની અગત્યની માહિતી આપે છે. જો દ્રાવણ ઍસિડિક અથવા બેઝિક સ્વભાવ દર્શાવે, તો ક્ષારનું જળવિભાજન થયેલું છે તેમ સૂચવે છે. જો દ્રાવણ સ્વભાવમાં બેઝિક હોય. તો, તે ક્ષાર કોઈ કાર્બોનેટ અથવા સલ્ફાઈડ વગેરે હોવો જોઈએ. જો દ્રાવણ ઍસિડિક સ્વભાવ દર્શાવે તો તે ઍસિડ ક્ષાર હોવો જોઈએ અથવા પ્રબળ ઍસિડ અને નિર્બળ બેઈઝનો ક્ષાર હોવો જોઈએ. આ પરિસ્થિતિમાં ઋણાયનની કસોટી કરતાં પહેલા દ્રાવણને સોડિયમ કાર્બોનેટ વડે તટસ્થ કરવું ઉત્તમ છે.

પ્રાથમિક કસોટીઓમાં મંદ H_2SO_4 / મંદ HCI અને સાંદ્ર H_2SO_4 સાથેની કસોટીમાં વાયુ ઉત્પન્ન થાય, તો તે ઍસિડ ક્ષારની હાજરી વિશે અગત્યનો સંકેત આપે છે (જૂઓ કોષ્ટક 7.1 અને 7.3). આયનોની નિર્ણાયક કસોટીઓ કરતાં પહેલાં પ્રાથમિક કસોટીઓ કરવી જ જોઈએ.

<u>પ્રયોગ 7.1</u>

હેતુ

નીચે આપેલા આયનોમાંથી આપેલા ક્ષારમાં રહેલા એક ધનાયન અને એક ઋણાયનની પરખ કરવી.

ધનાયન :
$$Pb^{2+}$$
, Cu^{2+} , As^{3+} , Al^{3+} , Fe^{3+} , Mn^{2+} , Ni^{2+} , Zn^{2+} , Co^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mg^{2+} , NH_4^+ ઋણાયન : CO_3^{2-} , S^{2-} , SO_3^{2-} , SO_4^{2-} , NO_2^- , NO_3^- , Cl^- , Br^- , I^- , PO_4^{3-} , $C_2O_4^{2-}$, CH_3COO^- (અદ્ભાવ્ય ક્ષારને બાકાત રાખવા)

સિધ્ધાંત

પૃથક્કરણમાં ખૂબ જ ઉપયોગી બે પાયાના સિધ્ધાંતો નીચે મુજબ છે :

- (i) દ્રાવ્યતા ગુણાકાર અને
- (ii) સમાન આયન અસર

જયારે ક્ષારનો આયનીય ગુજ્ઞાકાર તેના દ્રાવ્યતા ગુજ્ઞાકાર કરતાં વધી જાય, ત્યારે અવક્ષેપન થાય છે. ક્ષારના આયનીય ગુજ્ઞાકારનું નિયંત્રજ્ઞ સમાન આયનની અસરના ઉપયોગ વડે કરી શકાય છે, જેનો અભ્યાસ તમોએ રસાયજ્ઞવિજ્ઞાનના પાઠ્યપુસ્તકમાં કરેલો છે.

જરૂરી સામગ્રી

ઉત્કલન નળી : જરૂરિયાત મુજબ

• કસનળી : જરૂરિયાત મુજબ

અંકિત નળાકાર : એકકસનળી સ્ટેન્ડ : એક

• કસનળી હોલ્ડર : એક

નિકાસ નળી : એકબ્ય : જરૂરિયાત મુજબ

• બૂચ : જરૂરિયાત મુજબ • ગાળણપત્ર : જરૂરિયાત મુજબ

• પ્રક્રિયકો : જરૂરિયાત મુજબ

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

ઋણાયનનું પધ્ધતિસર પૃથક્કરણ

સોપાન I : મંદ સલ્ફ્યુરિક ઍસિડ સાથેની પ્રાથમિક કસોટી

આ કસોટીમાં ક્ષાર પર મંદ સલ્ફયુરિક ઍસિડની ઓરડાના તાપમાને અને ગરમ કરતાં અસર નોંધવામાં આવે છે (પધ્ધતિ નીચે આપેલ છે). કાર્બોનેટ (CO_3^{2-}) સલ્ફાઈડ (S^{2-}), સલ્ફાઈટ (SO_3^{2-}), નાઈટ્રાઈટ (NO_2^{-}) અને એસિટેટ (CH_3COO^{-}) મંદ સલ્ફયુરિક ઍસિડ સાથે પ્રક્રિયા કરે છે અને જુદા જુદા વાયુઓ ઉત્પન્ન કરે છે. ઉત્પન્ન થયેલા વાયુઓની લાક્ષણિકતાના અભ્યાસ પરથી ઋણાયન વિશે માહિતી મેળવાય છે. વાયુઓના લાક્ષણિક ગુણધર્મોનો સારાંશ નીચે કોષ્ટક 7.1માં દર્શાવેલ છે.

પધ્ધતિ :

(a) કસનળીમાં 0.1 g ક્ષાર લો અને 1-2 mL મંદ સલ્ફયુરિક ઍસિડ ઉમેરો. ઓરડાના તાપમાને કોઈ ફેરફાર હોય, તો નોંધો. જો કોઈ વાયુ ઉત્પન્ન થયો ન હોય, તો કસનળીમાંના મિશ્રણને ગરમ કરો. જો વાયુ ઉત્પન્ન થતો હોય, તો આકૃતિ 7.1માં દર્શાવ્યા મુજબના સાધનોનો ઉપયોગ કરી કસોટી કરો અને ઉત્પન્ન થયેલા વાયુને ઓળખી કાઢો (જૂઓ કોષ્ટક 7.1).

આકૃતિ 7.1 : વાયુની કસોટી

કોષ્ટક 7.1 મંદ સલ્ફ્યુરિક	ઍસિડ સાથે	. પ્રાથમિક	કસોટી
---------------------------	-----------	------------	-------

અવલોકનો	અનુમાન		
	ઉત્પન્ન થયેલો વાયુ	સંભવિત ઋણાયન	
રંગવિહીન, વાસવિહીન વાયુ સત્વરે ઊભરા સાથે ઉત્પન્ન થાય છે, છે ચૂનાના પાણીને દૂધિયું બનાવે છે.	CO_2	કાર્બોનેટ (CO_3^{2-})	
રંગવિહીન, સડેલા ઈંડા જેવી વાસવાળો વાયુ ઉત્પન્ન થાય છે, જે લેડ એસિટેટ પત્રને કાળો બનાવે છે.	$\mathrm{H_2S}$	સલ્ફાઈડ (S²-)	
સલ્ફરના બળવા જેવી તીવ્ર વાસવાળો રંગવિહીન વાયુ, જે ઍસિડમય પોટેશિયમ ડાયક્રોમેટના દ્રાવણને લીલું બનાવે છે.	SO_2	સલ્ફાઈટ (SO ₃ ^{2–})	
કથ્થાઈ ધુમાડો જે સ્ટાર્ચ દ્રાવણ ધરાવતા ઍસિડમય પોટેશિયમ આયોડાઈડ દ્રાવણને વાદળી બનાવે છે.	NO ₂	નાઈટ્રાઈટ (NO-2)	
સરકા જેવી વાસવાળી રંગવિહીન બાષ્પ. બાષ્પ વાદળી લિટમસને લાલ બનાવે છે.	CH₃COOH બાષ્પ	ઍસિટેટ (CH₃COO⁻)	

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

$CO_3^{2-}, S^{2-}, SO_3^{2-}, NO_2^-$ અને . . . - ની નિર્ણાયક કસોટીઓ

ઋણાયન માટેની નિર્ણાયક કસોટીઓ (ભીની) ક્ષાર પાણીમાં દ્રાવ્ય હોય, ત્યારે જળનિષ્કર્ષ અને જયારે ક્ષાર પાણીમાં અદ્રાવ્ય હોય, ત્યારે સોડિયમ કાર્બોનેટ નિષ્કર્ષનો ઉપયોગ કરી કરવામાં આવે છે. CO_3^2 ની નિર્ણાયક કસોટી ક્ષારના જલીયદ્રાવણ અથવા ઘનક્ષાર સાથે કરવામાં આવે છે કારણ કે સોડિયમ કાર્બોનેટ નિષ્કર્ષ કાર્બોનેટ આયન ધરાવે છે. જળનિષ્કર્ષ ક્ષારને પાણીમાં ઓગાળીને બનાવવામાં આવે છે. સોડિયમ કાર્બોનેટ નિષ્કર્ષની બનાવટ નીચે આપેલી છે.

સોડિયમ કાર્બોનેટ નિષ્કર્ષની બનાવટ

1 g ક્ષારને પોર્સેલિન ડિશ અથવા ઉત્કલન નળીમાં લો. આશરે 3 g ઘન સોડિયમ કાર્બોનેટને ક્ષાર સાથે મિશ્ર કરો. તેમાં 15 mL નિસ્યંદિત પાણી ઉમેરો, હલાવો અને મિશ્રશને 10 મિનિટ સુધી ઉકાળો, ઠંડુ પાડો, ગાળી લો અને ગાળણને કસનળીમાં એકઠું કરો. તેને સોડિયમ કાર્બોનેટ નિષ્કર્ષ એમ લેબલ લગાવો.

મંદ સલ્ફ્યુરિક ઍસિડ સાથે પ્રક્રિયા કરે છે, તેવા ઍસિડ મૂલકોની નિર્ણાયક કસોટીઓ નીચે કોષ્ટક 7.2 માં આપેલી છે.

કોષ્ટક 7.2 : $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$, માટેની નિર્ણાયક કસોટીઓ

ઋણાયન	નિર્ણાયક કસોટી		
કાર્બોનેટ (CO ₃ ²⁻)	કસનળીમાં 0.1 g ક્ષાર લો, તેમાં મંદ સલ્ફયુરિક ઍસિડ ઉમેરો. તીવ્ર ઉભરા સાથે CO ₂ વાયુ ઉત્પન્ન થાય છે. જે ચૂનાના પાણીને દૂધિયુ બનાવે છે. થોડા વધારે સમય માટે વાયુ પસાર કરતાં દૂધિયાપણુ દૂર થાય છે.		
સલ્ફાઈડ (S²-)	1 mL જળનિષ્કર્ષ લો અને તેમાં ઍમોનિયમ હાઈડ્રૉકસાઈડ અથવા સોડિયમ કાર્બોનેટ નિષ્કર્ષ ઉમેરી તેને આલ્કલાઈન બનાવો. તેમાં સોડિયમ નાઈટ્રોપ્રુસાઈડનું ટીપું ઉમેરો. જાંબુડિયો અથવા જાંબલી રંગ દેખાય છે.		
* સલ્ફાઈટ (SO32-)	(a) કસનળીમાં 1 mL જળિનષ્કર્ષ અથવા સોડિયમ કાર્બોનેટ નિષ્કર્ષ લો અને તેમાં બેરિયમ ક્લોરાઈડનું દ્રાવણ ઉમેરો. સફેદ અવક્ષેપ મળે છે જે મંદ હાઈડ્રૉકલોરિક ઍિસડમાં દ્રાવ્ય થાય છે અને સલ્ફર ડાયૉકસાઈડ વાયુ ઉત્પન્ન થાય છે. (b) એક કસનળીમાં તબક્કા(a)માં મળેલા અવક્ષેપ લો અને તેમાં મંદ H_2SO_4 વડે ઍિસડિક બનાવેલા પોટેશિયમ પરમેંગેનેટના થોડા ટીપાં ઉમેરો. પોટેશિયમ પરમેંગેનેટ દ્રાવણનો રંગ દૂર થાય છે.		
નાઈટ્રાઇટ (NO-2)	(a) કસનળીમાં 1 mL જળનિષ્કર્ષ લો. તેમાં થોડા ટીપાં પોટેશિયમ આયોડાઈડ દ્રાવણના અને થોડા ટીપાં સ્ટાર્ચના દ્રાવણના ઉમેરો. ઍસિટિક ઍસિડ વડે ઍસિડમય બનાવો. વાદળી રંગ જોવા મળે છે. (b) 1 mL જળનિષ્કર્ષને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવો. તેમાં 2-3 ટીપાં સલ્ફાનિલિક ઍસિડના દ્રાવણના ઉમેરો, બાદમાં 2–3 ટીપાં 1–નેપ્થાઈલએમાઈન પ્રક્રિયકના ઉમેરો. લાલ રંગ દેખાશે. જે નાઈટ્રાઈટ આયનની હાજરી સૂચવે છે.		

^{*} CO_2 ની જેમ સલ્ફર ડાયૉકસાઈડ પણ ચૂનાના પાણીને દૂધિયું બનાવે છે. પરંતુ CO_2 વાસવિહીન વાયુ છે જ્યારે SO_2 ને લાક્ષણિક વાસ હોય છે.

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

એસિટેટ (CH₃COO⁻)	(a)	ચાયના ડીશમાં 0.1 g ક્ષાર લો. તેમાં 1 mL ઈથેનોલ અને 0.2 mL સાંદ્ર
		$\mathrm{H}_{2}\mathrm{SO}_{4}$ ઉમેરો અને ગરમ કરો. ફળ જેવી વાસ ઍસિટેટ આયનની હાજરીને
		નિશ્ચિત કરે છે.
	(b)	કસનળીમાં 0.1 g ક્ષાર લો. તેમાં 1 - 2 mL નિસ્યંદિત પાણી ઉમેરો, બરાબર
		હલાવો, જરૂર જણાય, તો ગાળી લો. ગાળણમાં 1 થી 2 mL તટસ્થ** ફેરિક
		કલોરાઈડ દ્રાવણના ઉમેરો. ધેરો લાલ રંગ દેખાય છે, જે ઉકાળતાં દુર થાય છે
		અને કથ્થાઈ - લાલ અવક્ષેપ બને છે.

^{**} તટસ્થ ફેરિક કલોરાઈડની બનાવટ : ફેરિક કલોરાઈડના દ્રાવશમાં મંદ NaOH નું દ્રાવશ ટીપે ટીપે ઉમેરો અને હલાવતા રહો, જ્યાં સુધી થોડા પણ કાયમી અવક્ષેપ મળે ત્યાં સુધી. અવક્ષેપને ગાળી લો અને ગાળશને પૃથક્કરણ માટે ઉપયોગમાં લો.

નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

1. કાર્બોનેટ આયનની [CO²⁻] કસોટી

જો ઘન ક્ષારમાં મંદ ${\rm H_2SO_4}$ ઉમેરતાં, રંગવિહીન અને વાસવિહીન વાયુ ઉભરા સાથે ઉત્પન્ન થાય, તો તે કાર્બોનેટ આયનની હાજરી સૂચવે છે. વાયુ ચૂનાના નીતર્યા પાણીને દૂધિયુ બનાવે છે, કારણ કે ${\rm CaCO_3}$ બને છે (આકૃતિ 7.1).

$$Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + CO_2$$

 $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$

જો CO₂ વાયુને ચૂનાના દૂધિયા પાણીમાંથી વધારે સમય પસાર કરવામાં આવે તો ઉત્પન્ન થયેલું દૂધિયાપણું દૂર થાય છે. કારણ કે આ દરમિયાન કેલ્શિયમ હાઈડ્રોજન કાર્બોનેટ બને છે, જે પાણીમાં દ્રાવ્ય હોય છે.

$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca (HCO_3)_2$$

2. સલ્ફાઈડ આયનની $[S^{2-}]$ કસોટી

(a) સલ્ફાઈડ ગરમ મંદ H_2SO_4 સાથે હાઈડ્રોજન સલ્ફાઈડ વાયુ ઉત્પન્ન કરે છે જે સડેલા ઈડા જેવી વાસ ધરાવે છે. લેડ એસિટેટમાં બોળેલ ગાળણપત્રની પટ્ટીને વાયુ સામે ધરતાં તે કાળા રંગની બને છે. કારણ કે લેડ સલ્ફાઈડ બને છે, જે રંગમાં કાળો હોય છે.

$$Na_2S + H_2SO_4 \longrightarrow Na_2SO_4 + H_2S$$
 $(CH_3COO)_2Pb + H_2S \longrightarrow PbS + 2CH_3COOH$
લેડ સલ્ફાઈડ
કાળા અવક્ષેપ

(b) જો ક્ષાર પાણીમાં દ્રાવ્ય હોય, તો ક્ષારનું પાણીમાં બનાવેલું દ્રાવણ લો અને તેને ઍમોનિયમ હાઈડ્રૉકસાઈડ વડે આલ્કલાઈન બનાવી તેમાં સોડિયમ નાઈટ્રોપ્રુસાઈડનું દ્રાવણ ઉમેરો. જો ક્ષાર પાણીમાં અદ્રાવ્ય હોય, તો સોડિયમ કાર્બોનેટ નિષ્કર્ષ લો અને તેમાં થોડા ટીપાં સોડિયમ નાઈટ્રોપ્રુસાઈડના ઉમેરો. જાંબુડિયો અથવા જાંબલી રંગ દેખાય છે, જે

સંકીર્શ સંયોજન Naˌ[Fe(CN)ˌNOS] બનવાના કારણે છે, તે ક્ષારમાં સલ્ફાઈડ આયનની હાજરી નિશ્ચિત કરે છે.

 $Na_2S + Na_2[Fe(CN)_5NO] \longrightarrow Na_4[Fe(CN)_5NOS]$ સોડિયમ નાઇટ્રોપ્રુસાઈડ જાંબુડિયા રંગનો સંકીર્શ

સલ્ફાઈટ આયનની [SO²⁻] કસોટી 3.

સલ્ફાઈટ આયનની ગરમ મંદ H,SO4 સાથે પ્રક્રિયા કરવાથી SO, વાયુ ઉત્પન્ન થાય છે. જેસલ્ફર બળવાની વાસ ધરાવતો ગુંગળામણકારક હોય છે. $Na_2SO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + SO_5$ આ વાયુ મંદ H₂SO₄ વડે ઍસિડિક બનાવેલા પોટેશિયમ ડાયક્રોમેટ પત્રને લીલા રંગનું બનાવે છે.

$$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$$
 ક્રોમિયમ સલ્ફેટ (લીલો રંગ)

- (b) કલોરાઈડ ઉમેરવાથી બેરિયમ સલ્ફાઈટના સફેદ અવક્ષેપ ઉત્પન્ન થાય છે. $Na_{2}SO_{3} + BaCl_{2} \longrightarrow 2NaCl + BaSO_{3}$ આ અવક્ષેપ નીચે જણાવેલી કસોટીઓ આપે છે.
- આ અવક્ષેપની મંદ HCl સાથે પ્રક્રિયા કરવાથી, મંદ HCl વડે સલ્ફાઈટનું (i) વિઘટન થવાથી અવક્ષેપ દ્રાવ્ય થાય છે. ઉત્પન્ન થતાં SO, વાયુને કસોટી દ્વારા પારખી શકાય છે.

$$\mathrm{BaSO_3} \ + \ \mathrm{2HCl} \ \longrightarrow \ \mathrm{BaCl_2} \ + \ \mathrm{H_2O} \ + \ \mathrm{SO_2}$$

સલ્ફાઈટના અવક્ષેપ ઍસિડિક પોટેશિયમ પરમેંગેનેટના દ્રાવણનો રંગ દૂર (ii) કરે છે.

$$\begin{aligned} &BaSO_3 + H_2SO_4 \longrightarrow BaSO_4 + H_2O + SO_2 \\ &2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5 \ [O] \\ &SO_2 + H_2O + [O] \longrightarrow H_2SO_4 \end{aligned}$$

નાઈટ્રાઈટ આયનની [NO-7] કસોટી 4.

- ઘન નાઈટ્રાઈટને મંદ H₂SO₄ સાથે મિશ્ર કરી ગરમ કરતાં, NO₅ વાયુનો લાલાશ પડતો કથ્થાઈ રંગનો ઘુમાડો ઉત્પન્ન થાય છે. નાઈટ્રાઈટના ક્ષારના દ્રાવશમાં પોટેશિયમ આયોડાઈડનું દ્રાવશ ઉમેર્યા બાદ, તેમાં તાજુ બનાવેલું સ્ટાર્યનું દ્રાવણ ઉમેરવામાં આવે છે. આ દ્રાવણને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવવાથી વાદળી રંગ ઉત્પન્ન થાય છે. અન્ય રીતમાં ગાળણપત્રને પોટેશિયમ આયોડાઈડ અને સ્ટાર્ચના દ્રાવણ વડે ભીંજવવામાં આવે છે. આ ગાળણપત્ર પર ઍસિટિક ઍસિડના થોડા ટીપાં મૂકીને તેને ઉત્પન્ન થતાં વાયુના સંપર્કમાં લાવતા મૂક્ત થતો આયોડિન, સ્ટાર્ચ સાથે પારસ્પરિક ક્રિયા કરીને વાદળી રંગ આપે છે.
 - $2NaNO_2 + H_2SO_4 \longrightarrow Na_2SO_4 + 2HNO_2$ $3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$ $2NO + O_2 \longrightarrow 2NO_2$ કથ્થાઈ રંગનો વાય

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

- (ii) $NO_2^- + CH_3COOH \rightarrow HNO_2 + CH_3COO^ 2HNO_2 + 2KI + 2CH_3COOH \rightarrow 2CH_3COOK + 2H_2O + 2NO + I_2$ $I_2 + સ્ટાર્ચ \rightarrow$ વાદળી સંકીર્ણ સંયોજન
- (b) સલ્ફ્રાનિલિક ઍસિડ -1- નેપ્થાઈલએમાઈન પ્રક્રિયક કસોટી (ગ્રીસ ઈલોસ્વાય કસોટી) (Griss Ilosvay Test) સલ્ફ્રાનિલિક ઍસિડ અને 1- નેપ્થાઈલ ઍમાઈન પ્રક્રિયકને જળનિષ્કર્ષમાં ઉમેરતાં અથવા ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવતા ઉત્પન્ન થતા નાઈટ્રસ ઍસિડ વડે સલ્ફ્રાનિલિક ઍસિડનું ડાયએઝોટાઈઝેશન થાય છે. ડાયએઝોટાઈટેશન પામેલ ઍસિડ યુગ્મો 1- નેપ્થાઈલ ઍમાઈન સાથે પ્રક્રિયા કરી લાલ એઝો રંગક બનાવે છે.

 $NO_2^- + CH_3COOH \rightarrow HNO_2 + CH_3COO^-$

$$\begin{array}{c} \stackrel{^{+}}{\text{NH}_{3}}\text{.CH}_{3}\text{COO}^{-} \\ \\ \downarrow \\ \text{SO}_{3}\text{H} \end{array} + \text{HNO}_{2} \\ \begin{array}{c} \text{N = N - OOCCH}_{3} \\ \\ \text{+ 2H}_{2}\text{O} \\ \\ \text{SO}_{3}\text{H} \end{array}$$

$$N = N - OOCCH_3$$

$$+ W = N - OOCCH_3$$

$$+ N = N - NH_2 + CH_3COOH$$

$$+ NH_2 + CH_3COOH$$

1-નેપ્થાઈલ એમાઈન

લાલ એઝોરંગક

આ કસોટી માટેનું દ્રાવણ અતિ મંદ હોવું જોઈએ. સાંદ્ર દ્રાવણોમાં પ્રક્રિયા ડાયએઝોટાઈઝેશનથી આગળ થતી નથી.

5. એસિટેટ આયનની [CH₃COO⁻] કસોટી

(a) ક્ષારની પ્રક્રિયા મંદ H_2SO_4 સાથે કરવાથી, જો વિનેગરની વાસ આવે, તો તે સૂચવે છે કે ક્ષારમાં એસિટેટ આયન હાજર છે. ચાઈના ડીશમાં 0.1 g જેટલો ક્ષાર લઈ, તેમાં 1 mL ઈથેનોલ ત્યારબાદ તેમાં 0.2 mL સાંદ્ર H_2SO_4 ઉમેરી તેને ગરમ કરો. જો ઈથાઈલ ઍસિટેટની મીઠી વાસ આવે તો તે CH_4COO^- આયનની હાજરી સૂચવે છે.

2CH₃COONa + H₂SO₄
$$\longrightarrow$$
 Na₂SO₄ + 2CH₃COOH
CH₃COOH + C₂H₅OH \longrightarrow CH₃COOC₂H₅ + H₂O
ઈથાઈલ એસિટેટ
(મીઠી વાસ)

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

(b) ઍસિટેટ આયન તટસ્થ ફેરિક ક્લોરાઈડના દ્રાવણ સાથે પ્રક્રિયા કરી સંકીર્ણ આયન બનાવીને ઘેરો લાલ રંગ આપે છે. આ સંકીર્ણ આયનને ગરમ કરવાથી આયર્ન (III) ડાયહાઈડ્રૉકિસ ઍસિટેટના કથ્થાઈ લાલ રંગના અવક્ષેપ બને છે.

6 CH₃COO⁻ + 3Fe³+ 2H₂O → [Fe₃(OH)₂ (CH₃COO)₆]⁺ + 2H⁺ [Fe₃(OH)₂ (CH₃COO)₆]⁺ + 4H₂O → 3[Fe(OH)₂ (CH₃COO)] + 3CH₃COOH + H⁺ આયર્ન (III) ડાયહાઈદ્રૉકિસ એસિટેટ (કથ્થાઈ-લાલ-અવક્ષેપ)

સોપાન - II : સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથેની પ્રાથમિક કસોટી

જો મંદ H_2SO_4 સાથે કોઈ હકારાત્મક પરિણામો ન મળે તો કસનળીમાં 0.1~g ક્ષાર લઈ તેમાં સાંદ્ર H_2SO_4 ના 3 - 4 ટીંપા ઉમેરો. ઠંડી સ્થિતિમાં પ્રક્રિયા મિશ્રણમાં થતો ફેરફાર નોંધો. બાદમાં આ મિશ્રણને ગરમ કરો અને ઉત્પન્ન થતા વાયુને ઓળખો (જૂઓ કોપ્ટક 7.3).

કોષ્ટક 7.3 : સાંદ્ર સલ્ફયુરિક ઍસિડ સાથેની પ્રાથમિક કસોટીઓ

	અનુમાન		
અવલોકનો	ઉત્પન્ન થતાં વાયુ / બાષ્પ	શક્ય ઋણાયાન	
રંગવિહીન તીવ્ર વાસ વાળો વાયુ ઉત્પન્ન થાય છે, જે એમોનિયમ હાઈડ્રૉકસાઈડમાં ડુબાડેલા સળિયાને કસનળીના મુખ નજીક લાવતા ઘટ્ટ સફેદ ધુમાડા આપે છે.	HCl	કલોરાઈડ (Cl⁻)	
લાલશ પડતાં કથ્થાઈ રંગનો તીવ્ર વાસવાળો વાયુ ઉત્પન્ન થાય છે. પ્રક્રિયા મિશ્રણમાં ઘન MnO ₂ ઉમેરીને ગરમ કરતાં લાલાશ પડતા વાયુની તીવ્રતા વધે છે. દ્રાવણ પણ લાલ રંગ ધરાવે છે.	Br ₂ બાષ્પ	બ્રોમાઈડ (Br⁻)	
જાંબલી બાષ્પ ઉત્પન્ન થાય છે જે સ્ટાર્ચપત્રને વાદળી બનાવે છે અને કસનળીની અંદરની દીવાલો પર જાંબલી ઉર્ધ્વપાતીનું સ્તર બનાવે છે. પ્રક્રિયા મિશ્રણમાં MnO ₂ ઉમેરતાં ધુમાડો ઘટ્ટ બને છે.	I ₂ બાષ્પ	આયોડાઈડ (I⁻)	
કથ્થાઈ રંગનો ધુમાડો ઉત્પન્ન થાય છે, જે પ્રક્રિયા મિશ્રણમાં તાંબાની પાતળી વળાંકવાળી પટ્ટીઓ ઉમેરીને ગરમ કરતાં વધુ ઘટ્ટ બને છે તથા દ્રાવણ વાદળી રંગનું બને છે.	NO_2	નાઈટ્રેટ (NO₃)	
રંગવિહીન, વાસવિહીન વાયુ ઉત્પન્ન થાય છે જે ચૂનાના નિતર્યાપાણીને દૂધિયુ બનાવે છે અને ચૂનાના પાણીમાંથી નીકળતા વાયુને સળગાવતા તે વાદળી રંગની જયોતથી સળગે છે.	CO અને CO ₂	ઑકઝેલેટ (C ₂ O ₄ ²⁻)	

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

ઋશાયનની નિર્શાયક કસોટીઓ કોષ્ટક 7.4 માં દર્શાવેલી છે. આ કસોટીઓમાં ઋશાયન સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથે પ્રક્રિયા કરે છે.

કોષ્ટક $7.4: ext{ CI}^-, ext{Br}^-, ext{I}^-, ext{NO}_3^-$ અને $ext{ C}_2 ext{O}_4^{2^-}$ ની નિર્ણાયક કસોટીઓ

ઋણાયન		નિર્ણાયક કસોટી
કલોરાઈડ (Cl⁻)	(a)	એક કસનળીમાં 0.1 g ક્ષાર લો. તેમાં એક ચપટી જેટલો મેંગેનીઝ ડાયૉકસાઈડ અને 3 - 4 ટીપાં સાંદ્ર સલ્ફયુરિક ઍસિડના ઉમેરો. પ્રક્રિયા મિશ્રણને ગરમ કરો. લીલાશ પડતો પીળો ક્લોરિન વાયુ ઉત્પન્ન થાય છે, જેને તેની તીવ્ર વાસ અને વિરંજન (bleaching) અસરથી ઓળખી શકાય છે.
	(b)	એક કસનળીમાં 1 mL સોડિયમ કાર્બોનેટ નિષ્કર્ષ લો. તેને મંદ HNO ₃ વડે ઍસિડિક બનાવો અથવા જળનિષ્કર્ષ લો અને તેમાં સિલ્વર નાઈટ્રેટનું દ્રાવણ ઉમેરો. દહીંના ફોદા જેવા સફ્રેદ અવક્ષેપ મળે છે, જે એમોનિયમ હાઈડ્રૉકસાઈડના દ્રાવણમાં દ્રાવ્ય થાય છે.
	(c)	એક કસનળીમાં 0.1 g ક્ષાર અને એક ચપટી જેટલો પોટેશિયમ ડાયક્રોમેટ લો, તેમાં સાંદ્ર $\mathrm{H_2SO_4}$ ઉમેરીને ગરમ કરો. ઉત્પન્ન થતાં વાયુને સોડિયમ હાઈડ્રૉકસાઈડના દ્રાવણમાંથી પસાર કરો. આ દ્રાવણ પીળા રંગનું બનશે. આ દ્રાવણને બે ભાગમાં વહેંચો. એક ભાગને ઍસિટિક ઍસિડ ઉમેરી ઍસિડિક બનાવી તેમાં લેડએસિટેટનું દ્રાવણ ઉમેરો. પીળા રંગના અવક્ષેપ ઉત્પન્ન થશે. બીજા ભાગને મંદ સલ્ફયુરિક ઍસિડ વડે ઍસિડિક કરીને 1 mL એમાઈલ આલ્કોહૉલ ઉમેરવામા આવે છે. ત્યારબાદ તેમાં 1 mL 10 % હાઈડ્રૉજન પેરૉકસાઈડ ઉમેરવામાં આવે છે. આ મિશ્રણને યોગ્ય પ્રમાણમાં હલાવવાથી કાર્બનિક સ્તર વાદળી રંગનું બને છે.
બ્રોમાઈડ (Br⁻)	(a)	એક કસનળીમાં $0.1~\mathrm{g}$ ક્ષાર અને એક ચપટી જેટલો $\mathrm{MnO_2}$ લો. તેમાં 3 - 4 ટીપાં સાંદ્ર સલ્ફયુરિક ઍસિડ ઉમેરો અને ગરમ કરો. તીવ્ર કથ્થાઈ રંગનો ધુમાડો ઉત્પન્ન થશે.
	(b)	1 mL સોડિયમ કાર્બોનેટ નિષ્કર્ષને હાઈડ્રૉકલોરિક ઍસિડ વર્ડ તટસ્થ કરો (અથવા જળનિષ્કર્ષ લો). તેમાં 1 mL કાર્બન ટેટ્રાકલોરાઈડ (CCI₄) / કલોરોફોર્મ (CHCI₃)/ કાર્બન ડાયસલ્ફાઈડ ઉમેરો. હવે તેમાં વધુ પ્રમાણમાં કલોરિનજળને ટીંપે ટીંપે ઉમેરો અને કસનળીને હલાવો. કાર્બનિક સ્તરનો કથ્થાઈ રંગ બ્રોમાઈડ આયનની હાજરી નક્કી કરે છે.
	(c)	1 mL સોડિયમ કાર્બોનેટ નિષ્કર્ષને મંદ HNO ₃ વડે ઍસિડિક બનાવો (અથવા 1 mL જળનિષ્કર્ષ લો). તેમાં સિલ્વર નાઈટ્રેટનું દ્રાવણ ઉમેરો. આછા પીળા અવક્ષેપ મળે છે જે એમોનિયમ હાઈડ્રૉકસાઈડના દ્રાવણમાં મુશ્કેલીથી દ્રાવ્ય થાય છે.
આયોડાઈડ (I⁻)	(a)	1 mL ક્ષારનું દ્રાવણ લઈ તેને HCl વડે તટસ્થ બનાવો. તેમાં 1 mL કલોરોફોર્મ / કાર્બન ટેટ્રાકલોરાઈડ / કાર્બન ડાયસલ્ફાઈડ ઉમેરો. હવે તેમાં વધુ પ્રમાણમાં કલોરિન જળને ટીપે ટીપે ઉમેરો અને કસનળીને હલાવો. કાર્બનિક સ્તરમાં જાંબલી રંગ જોવા મળે છે.
	(b)	$1~\mathrm{mL}$ સોડિયમ કાર્બોનેટ નિષ્કર્ષ લઈ, તેને મંદ $\mathrm{HNO_3}$ વડે ઍસિડિક બનાવો (અથવા જળનિષ્કર્ષ લો). તેમાં સિલ્વર નાઈટ્રેટનું દ્રાવણ ઉમેરો. પીળા અવક્ષેપ મળે છે, જે $\mathrm{NH_4OH}$ ના દ્રાવણમાં અદ્રાવ્ય હોય છે.

* નાઈટ્રેટ (NO₃)		એક કસનળીમાં પાણીમાં બનાવેલા ક્ષારનું 1 mL દ્રાવણ લો. તેમાં 2 mL સાંદ્ર H_2SO_4 ઉમેરી તેને બરાબર મિશ્ર કરો. આ મિશ્રણને પાણીના નળની નીચે ઠંડુ કરો. હવે તાજા બનાવેલા ફેરસ સલ્ફેટના દ્રાવણને કસનળીમાં તેની દીવાલને અડકીને, મિશ્રણ હાલે નહિ તે રીતે ઉમેરો. જ્યાં બે દ્રાવણો ભેગા થાય છે ત્યાં ઘેરા કથ્થાઈ રંગની વીંટી જોવા મળે છે.
ઑકઝેલેટ (C ₂ O ₄ ²⁻)	(a)	જળનિષ્કર્ષ અથવા સોડિયમ કાર્બોનેટ નિષ્કર્ષ લઈ તેને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવી તેમાં કેલ્શિયમ કલોરાઈડનું દ્રાવશ ઉમેરો. સફેદ અવક્ષેપ ઉત્પન્ન થાય છે, જે ઍમોનિયમ ઑકઝેલેટ અને ઑકઝેલિક ઍસિડના દ્રાવશમાં અદ્રાવ્ય તથા મંદ હાઈડ્રૉકલોરિક ઍસિડ અને મંદ નાઈટ્રિક ઍસિડમાં દ્રાવ્ય હોય છે.
	(b)	(a) દરમિયાન પ્રાપ્ત થયેલા અવક્ષેપને લો, તેને મંદ $\mathrm{H_2SO_4}$ માં દ્રાવ્ય કરો. તેમાં અતિ મંદ $\mathrm{KMnO_4}$ નું દ્રાવણ ઉમેરો અને તેને ગરમ કરો. $\mathrm{KMnO_4}$ ના દ્રાવણનો રંગ દૂર થશે. ઉત્પન્ન થતા વાયુને ચૂનાના નીતર્યા પાણીમાં પસાર કરો, જે ચૂનાના પાણીને દૂધિયુ બનાવે છે.

નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

કલોરાઈડ આયન [CI⁻] ની કસોટી

જો ક્ષારની ગરમ સાંદ્ર $m H_2SO_4$ સાથે પ્રક્રિયા કરવામાં આવે તો તે તીવ્ર વાસવાળો રંગવિહીન વાયુ ઉત્પન્ન કરે છે. જો આ વાયુ એમોનિયાના દ્રાવણ સાથે ઘટ્ટ સફેદ ધુમાડો આપે તો આ ક્ષારમાં CI⁻ હાજર હશે અને નીચે દર્શાવેલી પ્રક્રિયાઓ થશે.

NaCl +
$$H_2SO_4$$
 \longrightarrow NaHSO $_4$ + HCl સોડિયમ હાઈડ્રૉજન કલોરાઈડ હાઈડ્રૉજન સલ્ફેટ રંગવિહીન વાયુ HCl + NH $_3$ \longrightarrow NH $_4$ Cl એમોનિયમ કલોરાઈડ સફેદ ધુમાડો

જો ક્ષારને સાંદ્ર H,SO, અને MnO, સાથે ગરમ કરતાં ઊભરા મળે અને (b) આછો લીલાશ પડતો પીળો તીવ્ર વાસ વાળો વાયુ ઉત્પન્ન થાય, તો તે કલોરાઈડ આયનની હાજરી સૂચવે છે.

$$\mathbf{MnO_2} + 2\mathbf{NaCl} + 2\mathbf{H_2SO_4} {\longrightarrow} \mathbf{Na_2SO_4} + \mathbf{MnSO_4} + 2\mathbf{H_2O} + \mathbf{Cl_2}$$

ક્ષારના દ્રાવશને મંદ HNO, વડે ઍસિડિક કરી તેમાં સિલ્વર નાઈટ્રેટનું દ્રાવશ (c) ઉમેરતાં તે એમોનિયમ હાઇડ્રૉકસાઈડમાં દ્રાવ્ય હોય તેવા દહીંના ફોદા જેવા સફ્રેદ અવક્ષેપ આપે છે, જે ક્ષારમાં Cl⁻ આયનની હાજરી સૂચવે છે.

NaCl + AgNO
$$_3$$
 \longrightarrow NaNO $_3$ + AgCl સિલ્વર કલોરાઈડ (સફેદ અવક્ષેપ)

AgCl + 2NH $_4$ OH \longrightarrow [Ag(NH $_3$) $_2$]Cl + 2H $_2$ O ડાયએમાઈન સિલ્વર (I) કલોરાઈડ

^{*} આ કસોટીમાં પ્રથમ ફેરસ સલ્ફેટ ઉમેરીને બાદમાં સાંદ્ર H₂SO₄ ઉમેરી શકાય છે.

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

એક કસનળીમાં ક્ષારનું થોડું પ્રમાણ લઈ, તેટલા જ પ્રમાણમાં ઘન પોટેશિયમ ડાયક્રોમેટ (K,Cr,O,) ઉમેરી મિશ્ર કરી, તેમાં સાંદ્ર H,SO, ઉમેરો. આ કસનળીને ગરમ કરો અને ઉત્પન્ન થતાં વાયુને સોડિયમ હાઇડ્રૉકસાઈડના દ્રાવણમાં પસાર કરો. જો પીળા રંગનું દ્રાવણ મળે તો તેને બે ભાગમાં વહેંચો. પહેલા ભાગને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવી તેમાં લેડ એસિટેટનું દ્રાવણ ઉમેરો. લેડ ક્રોમેટના પીળા રંગના અવક્ષેપની ઉત્પત્તિ ક્ષારમાં ક્લોરાઈડ આયનની હાજરી નિશ્ચિત કરે છે. આ કસોટીને **ક્રોમાઈલ કલોરાઈડ કસોટી*** કહે છે.

4NaCl +
$$K_2$$
Cr $_2$ O $_7$ + $6H_2$ SO $_4$ \longrightarrow 2KHSO $_4$ + 2CrO $_2$ Cl $_2$ + 4 NaHSO $_4$ + $3H_2$ O (ક્રોમાઈલ કલોરાઈડ)

ક્રોમાઈલ

$$CrO_2Cl_2 + 4NaOH \longrightarrow Na_2CrO_4 + 2NaCl + 2H_2O$$

$$(CH_3COO)_2Pb + Na_2CrO_4 \longrightarrow PbCrO_4 + 2CH_3COONa$$

સોડિયમ લેડ ક્રોમેટ
ક્રોમેટ (પીળા અવક્ષેપ)

બીજા ભાગને મંદ સલ્ફયુરિક ઍસિડ વડે ઍસિડિક કરી તેમાં થોડા પ્રમાણમાં એમાઈલ આલ્કોહૉલ ઉમેરો અને ત્યારબાદ તેમાં 1 mL 10 % હાઈડ્રોજન પેરૉકસાઈડનું દ્રાવણ ઉમેરો. તેને યોગ્ય પ્રમાણમાં હલાવવાથી કાર્બનિક સ્તર વાદળી રંગનું બને છે. ક્રોમાઈલ કલોરાઈડની સોડિયમ હાઇડ્રૉકસાઈડ સાથેની પ્રક્રિયામાં CrO₄²⁻ બને છે, જે હાઈડ્રૉજન પેરૉકસાઈડ સાથે પ્રક્રિયા કરી ક્રોમિયમ પેન્ટૉકસાઈડ (CrO્) બનાવે છે (જૂઓ બંધારણ). આ ક્રોમિયમ પેન્ટૉકસાઈડ એમાઈલ આલ્કોહૉલમાં દ્રાવ્ય થઈને વાદળી રંગ આપે છે.

$$\operatorname{CrO_4^{2^-}} + 2\operatorname{H} + 2\operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{CrO}_5 + 3\operatorname{H}_2\operatorname{O}_5$$
 કોમિયમ
પેન્ટૉકસાઈડ

2. બ્રોમાઈડ આયનની (Br-) કસોટી

ક્ષારને સાંદ્ર $\mathrm{H_{2}SO_{4}}$ સાથે ગરમ કરતાં બ્રોમિનનો લાલાશપડતો કથ્થાઈ ધુમાડો વધુ પ્રમાણમાં ઉત્પન્ન થાય છે. આ Br⁻ આયનની હાજરી સૂચવે છે. MnOુના ઉમેરણથી આ ધુમાડો વધુ તીવ્ર બને છે. બ્રોમિનની બાષ્ય સ્ટાર્ચપત્રને પીળુ બનાવે છે.

$$\begin{aligned} &2 \text{NaBr} + 2 \text{H}_2 \text{SO}_4 \longrightarrow \text{Br}_2 + \text{SO}_2 + \text{Na}_2 \text{SO}_4 + 2 \text{H}_2 \text{O} \\ &2 \text{NaBr} + \text{MnO}_2 + 2 \text{H}_2 \text{SO}_4 \longrightarrow \text{Na}_2 \text{SO}_4 + \text{MnSO}_4 + 2 \text{H}_2 \text{O} + \text{Br}_2 \end{aligned}$$

ક્ષારના પાણીમાં બનાવેલા દ્રાવણમાં અથવા મંદ HCl વડે તટસ્થ કરેલા સોડિયમ કાર્બોનેટ નિષ્કર્ષમાં 1 mL કાર્બન ટેટ્રાકલોરાઈડ (CCI,) / કલોરોફોર્મ (CH,CI)** અને તાજા બનાવેલા કલોરિનજળને ટીંપે ટીપે વધુ પ્રમાણમાં ઉમેરો. કસનળીને વધુ શકિતપૂર્વક હલાવો. તેમાં કાર્બનિક સ્તર નારંગી કથ્થાઈરંગનું દેખાય છે, જે બ્રોમાઈડ આયનની હાજરી નિશ્ચિત કરે છે. નારંગી કથ્થાઈ રંગ બ્રોમિનના વિયોજનના કારણે જોવા મળે છે. $2NaBr + Cl_2 \longrightarrow 2NaCl + Br_2$

કાર્બન ટેટ્રાકલોરાઈડ અથવા કલોરોફોર્મના સ્થાને કાર્બન ડાયસલ્ફાઈડ અથવા ડાયકલોરોમિથેન (CH,Cl_,) પણ વાપરી શકાય છે. 89

(b) ક્ષારના સોડિયમ કાર્બોનેટ નિષ્કર્ષને મંદ HNO₃ વડે ઍસિડિક બનાવો. તેમાં સિલ્વર નાઇટ્રેટનું (AgNO₃) દ્રાવણ ઉમેરો અને કસનળીને હલાવો. આછા પીળા અવક્ષેપ મળે છે, જે એમોનિયમ હાઈડ્રૉકસાઈડમાં મુશ્કેલીથી દ્રાવ્ય થાય છે.

$${
m NaBr} + {
m AgNO_3} \longrightarrow {
m NaNO_3} + {
m AgBr}$$
 સિલ્વર બ્રોમાઈડ આછા પીળા અવક્ષેપ

3. આયોડાઈડ આયન (I⁻) ની કસોટી

(a) જ્યારે ક્ષારને સાંદ્ર H₂SO₄ સાથે ગરમ કરવામાં આવે છે, ત્યારે તીવ્ર વાસવાળી ઘેરા જાંબલી રંગની બાષ્પ ઉત્પન્ન થાય છે. આ બાષ્પ સ્ટાર્ચપત્રને વાદળી બનાવે છે અને જાંબલી ઉર્ધ્વપાતી પદાર્થ કસનળીની અંદરની દીવાલ પર જમા થાય છે. આ આયોડાઇડ આયનની હાજરી સૂચવે છે. કેટલાક HI, સલ્ફર ડાયૉકસાઈડ, હાઇડ્રૉજન સલ્ફાઈડ અને સલ્ફર પણ નીચે જણાવેલ પ્રક્રિયાઓના કારણે ઉત્પન્ન થાય છે:

$$2\mathrm{NaI} + 2\mathrm{H_2SO_4} \rightarrow \mathrm{Na_2SO_4} + \mathrm{SO_2} + 2\mathrm{H_2O} + \mathrm{I_2}$$

 $I_2 + \lambda 2$ ાર્યનું દ્રાવશ o વાદળી રંગ

 $NaI + H_2SO_4 \rightarrow NaHSO_4 + HI$

 $2HI + H_2SO_4 \rightarrow 2H_2O + I_2 + SO_2$

 $6~\mathrm{NaI} + 4\mathrm{H_2SO_4} \rightarrow 3\mathrm{I_2} + 4\mathrm{H_2O} + \mathrm{S} + 3\mathrm{Na_2SO_4}$

 $8\text{NaI} + 5\text{H}_2\text{SO}_4 \rightarrow 4\text{I}_2 + \text{H}_2\text{S} + 4\text{Na}_2\text{SO}_4 + 4\text{H}_2\text{O}$

પ્રક્રિયા મિશ્રણમાં MnO_2 ઉમેરવામાં આવે, તો જાંબલી રંગની બાષ્પ ઘટ્ટ બને છે.

 $2\mathrm{NaI} + \mathrm{MnO_2} + 2\mathrm{H_2SO_4} \rightarrow \mathrm{I_2} + \mathrm{MnSO_4} + \mathrm{Na_2SO_4} + 2\mathrm{H_2O}$

(b) પાણીમાં બનાવેલા ક્ષારના દ્રાવણમાં અથવા મંદ HCI વડે તટસ્થ કરેલા સોડિયમ કાર્બોનેટના નિષ્કર્ષમાં 1 mL CH₃CI અથવા CCI₄ અને વધુ પ્રમાણમાં કલોરિન જળ ઉમેરો અને કસનળીને વધુ હલાવો. કાર્બનિક સ્તરમાં જાંબલી રંગની હાજરી આયોડાઈડ આયનની હાજરી નિશ્ચિત કરે છે.

$$2NaI + Cl_2 \rightarrow 2NaCl + I_2$$

આયોડિન કાર્બનિક સ્તરમાં ઓગળે છે અને દ્રાવણ જાંબલી રંગનું બનાવે છે.

(c) ક્ષારના સોડિયમ કાર્બોનેટના નિષ્કર્ષને મંદ HNO₃ વડે ઍસિડિક બનાવો અને તેમાં AgNO₃ નું દ્રાવશ ઉમેરો. જો પીળા અવક્ષેપ જોવા મળે અને તે વધુ પ્રમાશમાં NH₄OH માં અદ્રાવ્ય રહે, તો આયોડાઈડ આયનની હાજરી નિશ્ચિત થાય છે.

$$NaI + AgNO_3 \rightarrow Agl + NaNO_3$$
 સિલ્વર આયોડાઈડ (પીળા અવક્ષેપ)

આયોડિન શ્વાસમાં લેવાય કે ચામડીના સંપર્કમાં આવે તો નુકસાનકારક

કલોરિન શ્વાસમાં લેવાય તો ઝેરી

કલોરોફોર્મ શ્વાસમાં લેવાય તો નુકસાનકારક અને ઝેરી

90

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

4. નાઈટ્રેટ આયન (NO;) ની કસોટી

(a) જો ક્ષારને સાંદ્ર H_2SO_4 સાથે ગરમ કરવાથી આછા કથ્થાઈ રંગનો ધુમાડો ઉત્પન્ન થાય, તો આપેલા ક્ષારના ઓછા જથ્થાને તથા ઓછા પ્રમાણમાં તાંબાની પાતળી વળાંકવાળી પદ્દીઓ અથવા ટુકડાઓને સાંદ્ર H_2SO_4 સાથે ગરમ કરો. વધુ પ્રમાણમાં કથ્થાઈ રંગનો ધુમાડો ઉત્પન્ન થાય, તો તે નાઈટ્રેટ આયનની હાજરી સૂચવે છે. દ્રાવણમાં કોપર સલ્ફેટ બનવાના કારણે તે વાદળી રંગનું બને છે.

NaNO
$$_3$$
 + H $_2$ SO $_4$ \rightarrow NaHSO $_4$ + HNO $_3$
4HNO $_3$ \rightarrow 4NO $_2$ + O $_2$ + 2H $_2$ O
2NaNO $_3$ + 4H $_2$ SO $_4$ + 3Cu \rightarrow 3CuSO $_4$ + Na $_2$ SO $_4$ + 4H $_2$ O + 2NO કોપર સલ્ફેટ (વાદળી)

(b) 1 mL ક્ષારનું જલીય દ્રાવણ લો અને તેમાં 2 mL સાંદ્ર H_2SO_4 ધીમે ધીમે ઉમેરો. આ દ્રાવણોને બરાબર મિશ્ર કરો અને આ કસનળીને પાણીના નળની નીચે ઠંડી પાડો. હવે તાજા બનાવેલા ફેરસ સલ્ફેટના દ્રાવણને કસનળીમાં તેની દીવાલને અડકીને ટીપે ટીપે ઉમેરો, જે કસનળીમાં અગાઉથી રહેલા પ્રવાહીના ઉપરના ભાગમાં સ્તર બનાવે છે. અહીં, જ્યાં બે દ્રાવણો ભેગા થાય છે, ત્યાં નાઈટ્રોસો ફેરસ સલ્ફેટ (આકૃતિ 7.2) બનવાને કારણે ઘેરા કથ્થાઈ રંગની વીંટી રચાય છે. અન્ય રીતમાં પ્રથમ ફેરસ સલ્ફેટ ઉમેરવામાં આવે છે અને ત્યારબાદ સાંદ્ર સલ્ફ્યુરિક ઍસિડ ઉમેરવામાં આવે છે.

આકૃતિ 7.2 : કથ્થાઈ રંગની વીંટી બનવી

NaNO
$$_3$$
 + $\mathrm{H_2SO_4} \rightarrow \mathrm{NaHSO_4} + \mathrm{HNO_3}$
6 FeSO $_4$ + $3\mathrm{H_2SO_4} + 2\mathrm{HNO_3} \rightarrow 3\mathrm{Fe_2(SO_4)_3} + 4\mathrm{H_2O} + 2\mathrm{NO}$
FeSO $_4$ + NO \rightarrow [Fe(NO)]SO $_4$
નાઈટ્રોસો ફેરસ સલ્ફેટ
(કથ્થાઈ રંગ)

5. ઑકઝેલેટ આયનની $(C_2O_4^{2-})$ કસોટી

સાંદ્ર સલ્ફયુરિક એસિડ સાર્થના પ્રાથમિક પરીક્ષણમાં જો કાર્બન ડાયૉકસાઈડ વાયુ સાથે કાર્બન મોનૉકસાઈડ વાયુ ઉત્પન્ન થાય, તો તે ઑકઝેલેટ આયનની હાજરી સૂચવે છે. $(COONa)_2 +$ સાંદ્ર $H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2 \uparrow + CO \uparrow$

ઑકઝેલેટ આયનની હાજરી નીચે દર્શાવેલી કસોટીઓ દ્વારા નિશ્ચિત થાય છે :

(a) સોડિયમ કાર્બોનેટ નિષ્કર્ષને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવી તેમાં કેલ્શિયમ કલોરાઈડનું દ્રાવણ ઉમેરો. ઉત્પન્ન થતાં કેલ્શિયમ ઑકઝેલેટના સફેદ અવક્ષેપ, જે એમોનિયમ ઑકઝેલેટ અને ઑકઝેલિક ઍસિડના દ્રાવણમાં અદ્રાવ્ય હોય છે. આ પરિણામ ઑકઝેલેટ આયનની હાજરી સૂચવે છે.

$$\operatorname{CaCl}_2 + \operatorname{Na}_2\operatorname{C}_2\operatorname{O}_4 \ \ \, \to \ \ \, \operatorname{CaC}_2\operatorname{O}_4 \ \ \, + \ \, 2\operatorname{NaCl}$$
 કેલ્શિયમ ઑકઝેલેટ (સફેદ અવક્ષેપ)

(b) KMnO₄ કસોટી

કસોટી (a) માં મળતાં અવક્ષેપને ગાળો. તેમાં મંદ $\mathrm{H_2SO_4}$ ઉમેરી મંદ $\mathrm{KMnO_4}$ નું દ્રાવશ ઉમેરો અને મિશ્રશને ગરમ કરો. $\mathrm{KMnO_4}$ નો ગુલાબી રંગ દૂર થાય છે.

$${\rm CaC_2O_4} + {\rm H_2SO_4} \quad \rightarrow \quad {\rm CaSO_4} \quad + \quad {\rm H_2C_2O_4}$$
 કેલ્શિયમ સલ્ફેટ ઑકઝેલિક ઍસિડ

$$2 \text{ KMnO}_4 + 3 \text{H}_2 \text{SO}_4 + 5 \text{H}_2 \text{C}_2 \text{O}_4 \rightarrow 2 \text{MnSO}_4 + \text{K}_2 \text{SO}_4 + 8 \text{H}_2 \text{O} + 10 \text{CO}_2$$

ઉત્પન્ન થતાં વાયુને ચૂનાના નીતર્યા પાણીમાં પસાર કરો. સફેદ રંગના અવક્ષેપ ઉત્પન્ન થાય છે, જેમાં ઉત્પન્ન થતા વાયુને વધુ સમય પસાર કરવાથી તે દ્રાવ્ય થાય છે.

સોપાન - III : સલ્ફેટ અને ફોસ્ફેટની કસોટી

જો સોપાન - I અને II દરમિયાન કોઈ હકારાત્મક પરિણામો ન મળે તો સલ્ફેટ અને ફોસ્ફેટ આયનોની હાજરીની કસોટી કરવામાં આવે છે. આ કસોટીઓને કોષ્ટક 7.5 માં ટૂંકમાં દર્શાવેલી છે.

કોષ્ટક 7.5 : સલ્ફેટ અને ફોસ્ફેટ આયનોની નિર્ણાયક કસોટીઓ

આયન	નિર્ણાયક કસોટી			
સલ્ફેટ (SO_4^{2-})	(a) 1 mL ક્ષારનું જળનિષ્કર્ષ અથવા મંદ હાઇડ્રૉકલોરિક ઍસિડ વડે તટસ્થ કરેલ સોડિયમ કાર્બોનેટના નિષ્કર્ષમાં BaCl ₂ નું દ્રાવણ ઉમેરો. સાંદ્ર HCl અથવા સાં HNO ₃ માં અદ્રાવ્ય હોય, તેવા સફેદ અવક્ષેપ મળે છે.			
	(b) ક્ષારના જલીય દ્રાવણ અથવા સોડિયમ કાર્બોનેટ નિષ્કર્ષને ઍસિટિક ઍસિડ વ ઍસિડિક બનાવો અને તેમાં લેડ એસિટેટનું દ્રાવણ ઉમેરો. ઉત્પન્ન થતાં સફેદ અવક્ષેપ \mathbf{SO}_4^{2-} આયનની હાજરીને નિશ્ચિત કરે છે.			
ફોસ્ફ્રેટ (PO ³⁻)	(a) સોડિયમ કાર્બોનેટ નિષ્કર્ષ અથવા ક્ષારના પાણીમાં બનાવેલા દ્રાવણને સાંદ્ર HNO વંડે ઍસિડિક બનાવી તેમાં એમોનિયમ મોલિબ્ડેટનું દ્રાવણ ઉમેરો. આ મિશ્રણને ઉકાળો. આછા પીળા રંગના અવક્ષેપ ઉત્પન્ન થાય છે.			

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

1. સલ્ફેટ આયનની (SO_4^{2-}) કસોટી

(a) ક્ષારનું જલીય દ્રાવણ અથવા ક્ષારના સોડિયમ કાર્બોનેટ નિષ્કર્ષને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવી, તેમાં બેરિયમ કલોરાઈડ ઉમેરતાં તે બેરિયમ સલ્ફેટના સફેદ અવક્ષેપ આપે છે, જે સાંદ્ર HCI અથવા સાંદ્ર HNO₃ માં અદ્રાવ્ય હોય છે.

$$\mathrm{Na_2SO_4} + \mathrm{BaCl_2} \quad o \quad \mathrm{BaSO_4} \quad + \quad \mathrm{2NaCl}$$
 બેરિયમ સલ્ફેટ (સફેદ અવક્ષેપ)

(b) જ્યારે ક્ષારના જલીય દ્રાવણમાં અથવા ઍસિટિક ઍસિડ વડે તટસ્થ બનાવેલા સોડિયમ કાર્બોનેટ નિષ્કર્ષમાં લેડ એસિટેટનું દ્રાવણ ઉમેરવામાં આવે છે, ત્યારે સલ્ફેટ આયન લેડ સલ્ફેટના સફેદ અવક્ષેપ આપે છે.

$$Na_2SO_4 + (CH_3COO)_2Pb \rightarrow PbSO_4 + 2CH_3COONa$$

લેડ સલ્ફેટ
(સફેદ અવક્ષેપ)

2. ફોસ્ફેટ આયનની (PO₄-) કસોટી

 $Na_{2}HPO_{4} + 12(NH_{4})_{2} MoO_{4} + 23 HNO_{3} \rightarrow (NH_{4})_{3}[P (Mo_{3}O_{10})_{4}] + 2NaNO_{3} + 21NH_{4}NO_{3} + 12H_{2}O$ આછા પીળા અવક્ષેપ

ધનાયનનું પધ્ધતિસર પૃથક્કરણ

ધનાયનની કસોટીઓ નીચે દર્શાવેલી યોજના (Scheme) મુજબ કરવામાં આવે છે :

સોપાન-I : ધનાયનની પરખ માટે ક્ષારનું પ્રાથમિક પરીક્ષણ

1. રંગ કસોટી

ક્ષારના રંગનું કાળજીપૂર્વક અવલોકન કરો, જે ધનાયન વિશે ઉપયોગી માહિતી આપી શકે છે. કોષ્ટક 7.6 કેટલાક ધનાયનોના ક્ષારોના લાક્ષણિક રંગો દર્શાવે છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

કોષ્ટક 7.6 કેટલાક ધાતુ આયનોના લાક્ષણિક રંગો

રંગ	ધનાયન
આછો લીલો, પીળો, કથ્થાઈ	Fe^{2+}, Fe^{3+}
વાદળી	Cu^{2+}
ચળકતો લીલો	Ni^{2+}
વાદળી, લાલ, જાંબલી, ગુલાબી	Co^{2+}
આછો ગુલાબી	Mn ²⁺

2. શુષ્ક ગરમી કસોટી

- (i) ચોખ્ખી અને શુષ્ક કસનળીમાં 0.1 g શુષ્ક ક્ષાર લો.
- (ii) ઉપરની કસનળીને એક મિનિટ માટે ગરમ કરો અને કસનળીમાં રહેલા અવશેષ જયારે ગરમ હોય ત્યારે અને જયારે ઠંડા પડે ત્યારે, તેના રંગનું અવલોકન કરો. રંગમાં થતા આ ફેરફારનું અવલોકન ચોક્કસ ધનાયનની હાજરીનું સૂચન કરે છે, જેને નિર્ણયાત્મક પુરાવા તરીકે લઈ શકાશે નહિ (જૂઓ કોષ્ટક 7.7).

કોષ્ટક : 7.7 ક્ષાર ઠંડા હોય ત્યારે અને ગરમ હોય ત્યારે તેઓના રંગના આધારે અનુમાન

ઠંડા હોય ત્યારે રંગ	ગરમ હોય ત્યારે રંગ	અનુમાન
વાદળી	સફેદ	Cu^{2+}
લીલો	ગંદો સફેદ અથવા પીળો	Fe^{2+}
સફેદ	પીળો	Zn^{2+}
ગુલાબી	વાદળી	Co ²⁺

3. જયોત કસોટી

કેટલીક ધાતુઓના કલોરાઈડ સંયોજનો જ્યોતમાં લાક્ષણિક રંગ દર્શાવે છે, કારણ કે તેઓ જ્યોતિહીન (non-luminous) જ્યોતમાં બાષ્પશીલ હોય છે. આ કસોટીને પ્લેટિનમ તારની મદદથી નીચે દર્શાવ્યા મુજબ કરવામાં આવે છે:

- (i) પ્લેટિનમ તારના એક છેડે અતિ નાનો ગોળ ભાગ (100p) બનાવો.
- (ii) તારના ગોળ ભાગને સાંદ્ર હાઈડ્રૉકલોરિક ઍસિડમાં ડુબાડીને સાફ કરો અને તેને જ્યોતિહીન જ્યોતમાં પકડી રાખો (આકૃતિ 7.3).
- (iii) જ્યાં સુધી પ્લેટિનમ તાર જ્યોત સાથે રંગ આપતો બંધ થાય, ત્યાં સુધી સોપાન-(II) નું પુનરાવર્તન કરો.
- (iv) ચોખ્ખા વૉચ ગ્લાસમાં સાંદ્ર સલ્ફ્યુરિક ઍસિડના 2-3 ટીપા મૂકો અને તેમાં ક્ષારના ઓછા જથ્થાની લુગદી (paste) બનાવો.
- (v) પ્લેટીનમ તારના ચોખ્ખા ગોળ ભાગને આ લુગદીમાં ડુબાડો અને આ ગોળ ભાગને જ્યોતિહીન (ઑક્સિડેશનકર્તા) જ્યોતમાં રાખો (આકૃતિ 7.3).
- (vi) પ્રથમ આ જયોતના રંગનું અવલોકન નરી આંખ વડે કરો અને ત્યારબાદ વાદળી રંગના કાચ વડે કરો. કોષ્ટક 7.8ની મદદથી ધાતુ આયનને ઓળખો.

આકૃતિ 7.3 : જ્યોત કસોટી કરવાની રીત

કોષ્ટક 7.8 : જ્યોત કસોટીના આધારે અનુમાન

નરી આંખ વડે અવલોકન કરવામાં આવેલી જ્યોતનો રંગ	વાદળી કાચ વડે અવલોકન કરવામાં આવેલી જ્યોતનો રંગ	અનુમાન
મધ્યમાં વાદળી રંગ હોય તેવી લીલી જ્યોત કિરમજી લાલ લીલા સફરજન જેવો રંગ ઇંટ જેવો લાલ	કાચની મદદ સિવાય જે રંગ જોવા મળે છે તે જ રંગ જાંબુડિયો વાદળી પડતો લીલો લીલો	Cu^{2+} Sr^{2+} Ba^{2+} Ca^{2+}

4. બોરેકસ મણકા કસોટી

આ કસોટી માત્ર રંગીન ક્ષારો માટે ઉપયોગી બને છે. કારણ કે બોરેકસ ધાતુ ક્ષારો સાથે પ્રક્રિયા કરી, ધાતુ બોરેટ સંયોજનો અથવા ધાતુઓ બનાવે છે, જે લાક્ષણિક રંગ ધરાવે છે.

- (i) આ કસોટી કરવા માટે પ્લેટિનમ તારના એક છેડે ગોળ ભાગ બનાવો અને તેને લાલ ચોળ ગરમ થાય, ત્યાં સુધી જ્યોતમાં ગરમ કરો.
- (ii) ગરમ ગોળ ભાગને બોરેકસ પાઉડરમાં ડુબાડો અને તેને ફરીથી ત્યાં સુધી ગરમ કરો, જેથી ગોળ ભાગ પર રંગવિહીન પારદર્શક મણકો બને. આ બોરેકસ મણકાને કસોટી માટેના ક્ષાર અથવા મિશ્રણમાં ડુબાડતા અગાઉ ચકાસીને નક્કી કરો કે બોરેકસ મણકો પારદર્શક અને રંગવિહીન છે. જો તે રંગીન માલૂમ પડે, તો તેનો અર્થ એ થાય કે પ્લેટિનમ તાર સ્વચ્છ નથી. હવે પ્લેટિનમ તારને સાફ કર્યા બાદ તાજો બોરેક્સ મણકો બનાવો.
- (iii) મણકાને શુષ્ક ક્ષારના થોડા જથ્થામાં ડુબાડો અને તેને ફરીથી જ્યોતમાં રાખો.
- (iv) હવે આ મણકાને જ્યોતિમય જ્યોત અને જ્યોતિહીન જ્યોતમાં અલગ-અલગ ગરમ કર્યા બાદ તે ગરમ હોય ત્યારે અને તે ઠંડો હોય ત્યારે તેના રંગનું અવલોકન કરો (આકૃતિ 7.4).
- (v) પ્લેટિનમ તારમાંથી મણકાને દૂર કરવા, તારને લાલચોળ ગરમ કરી તેના પર તમારી આંગળી ઠપકારો (આકૃતિ 7.5).

આકૃતિ 7.4: બોરેકસ મણકા કસોટી
(a) રિડકશનકર્તા જ્યોતમાં
ગરમ કરવાની પ્રક્રિયા
(b) ઑકિસડેશનકર્તા
જ્યોતમાં ગરમ કરવાની
પ્રક્રિયા

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

ગરમ કરવાથી બોરેક્સ સ્ફટિકજળ ગુમાવે છે અને તેનું વિઘટન થઈ સોડિયમ મેટાબોરેટ અને બોરિક એનહાઈડ્રાઈડ બને છે.

$${
m Na_2B_4O_7}$$
 . 10 ${
m H_2O}
ightarrow {
m Na_2B_4O_7} + 10 {
m H_2O}$ બોરેકસ

$$\mathrm{Na_2B_4O_7} \longrightarrow \mathrm{2NaBO_2} + \mathrm{B_2O_3}$$
 સોડિયમ મેટાબોરેટ બોરિક એનહાઈડ્રાઈડ

ધાતુક્ષારની બોરિક એનહાઈડ્રાઈડ સાથેની પ્રક્રિયાથી ધાતુના મેટાબોરેટ બને છે, જે ઓકિસડેશનકર્તા અને રિડકશનકર્તા જ્યોતમાં જુદા જુદા રંગો આપે છે. દા.ત., કોપર સલ્ફેટના કિસ્સામાં નીચે દર્શાવેલી પ્રક્રિયાઓ થાય છે.

$$\begin{array}{cccc} \mathrm{CuSO_4} + \mathrm{B_2O_3} & \xrightarrow{\mathrm{syllGell} + \mathrm{syllG}} & \mathrm{Cu(BO_2)_2} & + & \mathrm{SO_3} \\ & & & \mathrm{syllBe} & \mathrm{hlowell} \\ & & & & \mathrm{cuevl} - \mathrm{dleil} & \mathrm{ind} \end{array}$$

રિડકશનકર્તા જ્યોતમાં બે પ્રક્રિયાઓ થઈ શકે છે :

(i) વાદળી $Cu(BO_2)_2$ નીચે દર્શાવ્યા પ્રમાણે રંગવિહીન ક્યુપ્રસ મેટાબોરેટમાં રિડકશન પામે છે.

 $2Cu(BO_2)_2 + 2NaBO_2 + C$ ____જ્યોતિમય જ્યોત ____ $2CuBO_2 + Na_2B_4O_7 + CO$ અથવા

(ii) કોપર મેટાબોરેટ ધાત્વીય કોપરમાં રિડકશન પામી શકે છે અને મણકો લાલ અને અપારદર્શક જોવા મળે છે.

 $2\mathrm{Cu(BO_2)_2} + 4\mathrm{NaBO_2} + 2\mathrm{C} \xrightarrow{\mathrm{sulland sulla}} 2\mathrm{Cu} + 2\mathrm{Na_2B_4O_7} + 2\mathrm{CO}$ ધાતુ આયનની પ્રાથમિક ઓળખ કોપ્ટક 7.9 ના આધારે નક્કી કરી શકાય છે :

આકૃતિ 7.5 : બોરેકસ મણકાને દૂર કરવાની રીત

કોષ્ટક 7.9 : બોરેકસ મણકા કસોટીના આધારે અનુમાન

ઑકિસડેશનકર્તા (જ્યોતિહીન) જ્યોતમાં ગરમ કરવાથી		રિડકશનકર્તા (જ્યોતિમય) જ્યોતમાં ગરમ કરવાથી		
ક્ષારના મણકાનો રંગ		ક્ષારના મણકાનો રંગ		અનુમાન
ઠંડો હોય ત્યારે	ગરમ હોય ત્યારે	ઠંડો હોય ત્યારે	ગરમ હોય ત્યારે	
વાદળી	લીલો	લાલ અપારદર્શક	રંગવિહીન	Cu ²⁺
લાલાશ પડતો કથ્થાઈ	જાંબલી	રાખોડી	રાખોડી	Ni ²⁺
આછો જાંબલી	આછો જાંબલી	રંગવિહીન	રંગવિહીન	Mn ²⁺
પીળો	પીળાશ પડતો કથ્થાઈ	લીલો	લીલો	Fe ³⁺

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

5. કોલસા પોલાણ કસોટી

જયારે ધાત્વીય કાર્બોનેટને કોલસાના પોલાણમાં ગરમ કરવામાં આવે છે, ત્યારે તે વિઘટન પામી અનુવર્તી ઑકસાઈડ આપે છે. આ ઑકસાઈડ પોલાણમાં રંગીન અવશેષ તરીકે જોવા મળે છે. કેટલીકવાર ઑકસાઈડ કોલસાના પોલાણના કાર્બન દ્વારા ધાતુમાં રિકડશન પામી શકે છે. આ કસોટીને નીચે દર્શાવ્યા મુજબ કરી શકાય છે.

(i) કોલસાના ચોસલામાં કોલસા વેધક વડે નાનું પોલાણ બનાવો. વધુ દબાણ લગાવવું નહિ, નહિ તો તે તૂટી જશે [આકૃતિ 7.6 (a)].

આકૃતિ 7.6 : (a) કોલસામાં પોલાણ બનાવવું (b) પોલાણમાં ક્ષારને ગરમ કરવું

- (iii) પોલાણમાં રહેલા ક્ષારને પાણીના એક કે બે ટીપાં વડે ભીંજવો, નહિ તો ક્ષાર / મિશ્રણ દૂર ફૂંકાઈ જશે.
- (iv) ક્ષારને ફૂંકણી (blowpipe)ની મદદથી જયોતિમય (રિડકશનકર્તા) જયોતમાં ગરમ કરો અને પોલાણમાં રચાતા ઑકસાઈડ / ધાત્વીય મણકાના રંગનું જયારે તે ગરમ અને ઠંડો હોય ત્યારે એમ બંને સ્થિતિમાં તેનું અવલોકન કરો [આકૃતિ 7.6 (b)]. આકૃતિ 7.7 (a) અને (b) માં દર્શાવ્યા મુજબ ઑકિસડેશનકર્તા અને રિડકશનકર્તા જયોત મેળવો.
- (v) નવા ક્ષારની કસોટી માટે હંમેશા નવું પોલાણ બનાવવું.

આકૃતિ 7.7 : ઑકિસડેશનકર્તા અને રિડકશનકર્તા જ્યોતની પ્રાપ્તિ (a) ઑકિસડેશનકર્તા જ્યોત (b) રિડકશનકર્તા જ્યોત

- નોંધ : ફૂંકણીના મોંઢિયાને જયોતના એક્તૃતીયાંશ ભાગની અંદર રાખીને ઑકિસડેશનકર્તા જયોત મેળવો.
 - ફૂંકણીના મોંઢિયાને જયોતની બહારની બાજુ રાખીને રિડકશનકર્તા જયોત મેળવો.

97

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જ્યારે આ કસોટી CuSO₄ સાથે કરવામાં આવે છે, ત્યારે નીચે દર્શાવેલા ફેરફારો થાય છે :

$$\begin{array}{cccc} \text{CuSO}_4 + \text{Na}_2\text{CO}_3 & \xrightarrow{\text{ગરમી}} & \text{CuCO}_3 + \text{Na}_2\text{SO}_4 \\ \\ \text{CuCO}_3 & \xrightarrow{\text{ગરમી}} & \text{CuO} + \text{CO}_2 \\ \\ \text{CuO} + \text{C} & \xrightarrow{\text{ગરમી}} & \text{Cu} & + & \text{CO} \\ \\ & & \text{લાલ રંગ} \end{array}$$

ZnSO₄ ના કિસ્સામાં :

$$ZnSO_4 + Na_2CO_3 \xrightarrow{\text{ગરમી}} ZnCO_3 + Na_2SO_4$$
 $ZnCO_3 \xrightarrow{\text{ગરમી}} ZnO + CO_2$
ગરમ હોય ત્યારે પીળો કંડો હોય ત્યારે સફેદ

ધાત્ આયનનું અનુમાન કોષ્ટક 7.10 ના આધારે કરી શકાય છે.

કોષ્ટક 7.10 કોલસા પોલાણ કસોટીના આધારે અનુમાન

	<u> </u>
અવલોકન	અનુમાન
ગરમ હોય ત્યારે પીળા અવશેષ અને ઠંડુ હોય ત્યારે રાખોડી ધાતુ લસણની વાસ વાળા સફેદ અવશેષ કથ્થાઈ અવશેષ	Pb^{2+} As^{3+} Cd^{2+}
ગરમ હોય ત્યારે પીળા અવશેષ અને ઠંડા હોય ત્યારે સફેદ અવશેષ	Zn ²⁺

6. કોબાલ્ટ નાઈટ્રેટ કસોટી

જો કોલસાના પોલાણમાં રહેલો અવશેષ સફેદ હોય, તો કોબાલ્ટ નાઈટ્રેટ કસોટી કરવામાં આવે છે.

- (i) અવશેષ પર કોબાલ્ટ નાઈટ્રેટ દ્રાવણના બે કે ત્રણ ટીપાં મૂકો.
- (ii) આ અવશેષને ફૂંકણીની મદદથી જયોતિહીન જયોતમાં ગરમ કરો અને અવશેષના રંગનું અવલોકન કરો.

ગરમ કરવાથી કોબાલ્ટ નાઇટ્રેટ, કોબાલ્ટ (II) ઑકસાઈડમાં વિઘટન પામે છે, જે પોલાણમાં રહેલા ધાતુ ઑકસાઈડ સાથે લાક્ષણિક રંગ આપે છે.

આમ, ZnO, Al_2O_3 અને MgO સાથે નીચે દર્શાવ્યા મુજબની પ્રક્રિયાઓ થાય છે.

$$2\text{Co (NO}_3)_2 \xrightarrow{\text{ગરમી}} 2\text{CoO} + 4\text{NO}_2 + \text{O}_2$$
 $2\text{CoO} + 2\text{nO} \rightarrow 2\text{CoO} + 4\text{NO}_2 + \text{O}_2$
લીલો રંગ
 $2\text{CoO} + 2\text{NO} \rightarrow 2\text{CoO} + 2\text{NO}$
ગુલાબી રંગ

$$\operatorname{CoO} + \operatorname{Al_2O_3} \rightarrow \operatorname{CoO.Al_2O_3}$$
 વાદળી રંગ

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

સોપાન - II : ધનાયનોની પરખ માટે ભીની કસોટીઓ

ઉપર દર્શાવેલી પ્રાથમિક કસોટીઓ જે ધનાયનની હાજરીનું સૂચન કરે છે તેઓને નીચે દર્શાવેલી પધ્ધતિસરની પૃથક્કરણ પધ્ધતિ દ્વારા નિશ્ચિત કરવામાં આવે છે.

આ માટે સૌ પ્રથમ આવશ્યક સોપાન ક્ષારનું ચોખ્ખું અને પારદર્શક દ્રાવણ બનાવવાનું છે. તેને મૂળ દ્રાવણ કહેવામાં આવે છે. તેને નીચે દર્શાવ્યા મુજબ બનાવી શકાય છે.

મૂળ દ્રાવણની બનાવટ (મૂ.દ્રા)

મૂળ દ્રાવશને બનાવવા માટે નીચે દર્શાવેલા સોપાનને પધ્ધતિસરના ક્રમમાં એક પછી એક અનુસરવામાં આવે છે. જો ક્ષાર કોઈ ચોક્કસ દ્રાવકમાં ગરમી આપવા છતાં પણ દ્રાવ્ય ન થાય, તો બીજા દ્રાવક વડે પ્રયત્ન કરો.

નીચે દર્શાવેલા દ્રાવકો માટે પ્રયત્ન કરવામાં આવે છે :

- 1. સ્વચ્છ કસનળીમાં ક્ષારનો થોડો જથ્થો લો અને તેમાં થોડા mL નિસ્યંદિત પાણી ઉમેરી તેને હલાવો. જો ક્ષાર દ્રાવ્ય ન થાય તો, કસનળીમાં રહેલો ક્ષાર સંપૂર્ણપણે દ્રાવ્ય થાય, ત્યાં સુધી કસનળીને ગરમ કરો.
- 2. ઉપર દર્શાવ્યા મુજબ ક્ષાર જો પાણીમાં અદ્રાવ્ય રહે તો, અન્ય સ્વચ્છ કસનળીમાં ફરીથી ક્ષારને લો અને મંદ HCl ના થોડા mL તેમાં ઉમેરો. જો ક્ષાર ઠંડામાં અદ્રાવ્ય રહે તો, કસનળીને ક્ષાર સંપૂર્ણપણે દ્રાવ્ય થાય ત્યાં સુધી ગરમ કરો.
- 3. જો ક્ષાર પાણી અથવા મંદ HCl માં ગરમ કરવા છતાં દ્રાવ્ય ન થતો હોય, તો તેને સાંદ્ર HCl ના થોડા mL સાથે ગરમ કરી દ્રાવ્ય કરવાનો પ્રયત્ન કરો.
- 4. જો ક્ષાર સાંદ્ર HCl માં દ્રાવ્ય ન થાય તો તેને મંદ નાઈટ્રિક ઍસિડમાં દ્રાવ્ય કરો.
- 5. જો ક્ષાર નાઈટ્રિક ઍસિડમાં પણ દ્રાવ્ય ન થાય તો, સાંદ્ર HCl અને સાંદ્ર HNO₃ ના 3 : 1 પ્રમાણના મિશ્રણનો પ્રયત્ન કરવામાં આવે છે. આ મિશ્રણને એકવારીજીઆ (અમ્લરાજ) કહે છે. જે ક્ષાર એકવારીજીઆમાં દ્રાવ્ય થતો નથી તેને અદ્રાવ્ય ક્ષાર તરીકે ગણવામાં આવે છે.

સમૂહ પૃથક્કરણ

(I) શૂન્ય સમૂહ ધનાયનનું (NH_4^+ આયન) પૃથક્કરણ

- (a) કસનળીમાં 0.1 g ક્ષાર લો અને તેમાં 1-2 mL NaOH નું દ્રાવણ ઉમેરી ગરમ કરો. જો એમોનિયાની વાસ આવે, તો તે એમોનિયમ આયનની હાજરી સૂચવે છે. હાઇડ્રૉકલોરિક ઍસિડમાં બોળેલા કાચના સળિયાને કસનળીના મુખ આગળ લાવો. સફ્રેદ ધુમાડો જોવા મળે છે.
- (b) આ વાયુને નેસ્લર પ્રક્રિયકમાં પસાર કરો. કથ્થાઈ રંગના અવક્ષેપ પ્રાપ્ત થાય છે.

NH₄ આયનની નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

(a) એમોનિયમ ક્ષારની સોડિયમ હાઈડ્રૉકસાઈડ સાથેની પ્રક્રિયાથી એમોનિયા વાયુ ઉત્પન્ન થાય છે. તે હાઇડ્રૉકલોરિક ઍસિડ સાથે પ્રક્રિયા કરી, એમોનિયમ ક્લોરાઈડ બનાવે છે, જે ઘટ્ટ સફેદ ધૂમાડા તરીકે જોવા મળે છે.

$$(NH_4)_2 SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2NH_3 + 2H_2O$$

 $NH_3 + HCI \rightarrow NH_4CI$

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

આ વાયુને નેસ્લર પ્રક્રિયકમાં પસાર કરતાં દ્રાવણ કથ્થાઈ રંગનું અથવા બેઝિક મરક્યુરી (II) એમિડો - આયોડિનના અવક્ષેપ બને છે.

મરક્યુરી ક્ષાર 🎉

 $2K_{2}HgI_{4} + NH_{3} + 3KOH \rightarrow HgO.Hg(NH_{2})I + 7KI + 2H_{2}O$ બેઝિક મરક્યુરી (II) એમિડો-આયોડિન (કથ્થાઈ અવક્ષેપ)

સમૂહો I - VI માં રહેલા ધનાયનના પૃથક્કરણ માટે, નીચે દર્શાવેલા ક્રમદર્શી રેખાચિત્રમાં (Flow chart) સૂચવ્યા મુજબની યોજના અનુસાર સમૂહ પ્રક્રિયકોની (જૂઓ કોપ્ટક 7.11) મદદથી મૂળ દ્રાવણમાંથી ધનાયનોને અવક્ષેપિત કરવામાં આવે છે.

બધા છ સમૂહોનું અલગીકરણ નીચે રજૂ કર્યું છે.

આ ક્રમદર્શી રેખાચિત્ર માત્ર એક ધનાયની પરખ માટે છે.
 એક કરતાં વધુ ધનાયનની પરખ માટે તેમાં સુધારો જરૂરી બને છે.

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

કોષ્ટક 7.11: આયનોના અવક્ષેપન માટે સમૂહ પ્રક્રિયકો

સમૂહ	ધનાયન*	સમૂહ પ્રક્રિયક
સમૂહ શૂન્ય	NH_4^+	કોઈ નહિ
સમૂહ - I	Pb^{2+}	મંદ HCl
સમૂહ - II	Pb ²⁺ , Cu ²⁺ , As ³⁺	મંદ HCl ની હાજરીમાં $ m H_2S$ વાયુ
સમૂહ - III	Al^{3+} , Fe^{3+}	NH₄Cl ની હાજરીમાં NH₄OH
સમૂહ - IV	Co^{2+} , Ni^{2+} , Mn^{2+} , Zn^{2+}	$\mathrm{NH_4OH}$ ની હાજરીમાં $\mathrm{H_2S}$ વાયુ
સમૂહ -V	$Ba^{2+}, Sr^{2+}, Ca^{2+}$	NH₄OH ની હાજરીમાં (NH₄)₂ CO₃
સમૂહ -VI	Mg^{2+}	કોઈ નહિ

(II) સમૂહ - I ના ધનાયનોનું પૃથક્કરણ

કસનળીમાં થોડા પ્રમાણમાં મૂળ દ્રાવણ (જો ગરમ સાંદ્ર HCl માં બનાવેલું હોય તો) લો અને તેમાં ઠંડુ પાણી ઉમેરો. આ કસનળીને પાણીના નળ નીચે ઠંડુ કરો. જો સફેદ અવક્ષેપ જોવા મળે, તો તે સમૂહ - I ના Pb²⁺ આયનની હાજરી સૂચવે છે. અન્ય રીતમાં જો મૂળ દ્રાવણ પાણીમાં બનાવેલુ હોય અને તેમાં મંદ HCl ઉમેરવામાં આવતાં સફેદ અવક્ષેપ જોવા મળે, તો તે પણ Pb²⁺ ની હાજરી સૂચવે છે. તેની નિર્ણાયક કસોટીઓ નીચે કોષ્ટક 7.12 માં વર્ણવી છે.

કોષ્ટક 7.12 : સમૂહ - I ના ધનાયન (Pb²+) ની નિર્ણાયક કસોટીઓ

	પ્રયોગ	અવલોકન
	ોપને ગરમ પાણીમાં દ્રાવ્ય કરો અને આ દ્રાવણને ત્રણ ભાગમાં વહેંચો.	
1.	પહેલા ભાગમાં પોટેશિયમ આયોડાઈડનું દ્રાવણ ઉમેરો.	પીળા અવક્ષેપ મળે છે.
2.	બીજા ભાગમાં પોટેશિયમ ક્રોમેટનું દ્રાવણ ઉમેરો.	પીળા અવક્ષેપ મળે છે, જે NaOH માં દ્રાવ્ય અને એમોનિયમ એસિટેટના દ્રાવણમાં અદ્રાવ્ય હોય છે.
3.	ગરમ દ્રાવણના ત્રીજા ભાગમાં આલ્કોહૉલના થોડા	સફ્રેદ અવક્ષેપ મળે છે, જે એમોનિયમ એસિટેટ
	ર્ટીપા અને મંદ સલ્ફયુરિક ઍસિડ ઉમેરો.	દ્રાવણમાં દ્રાવ્ય થાય છે.

Pb2+ આયનની નિર્ણાયક કસોટીનું રસાયણવિજ્ઞાન

પ્રથમ સમૂહમાં લેડ, લેડ ક્લોરાઈડ તરીકે અવક્ષેપિત થાય છે. આ અવક્ષેપ ગરમ પાણીમાં દ્રાવ્ય થાય છે.

1. પોટેશિયમ આયોડાઈડનું (KI) દ્રાવણ ઉમેરવાથી લેડ આયોડાઈડના પીળા અવક્ષેપ મળે છે. જે Pb²+ આયનની હાજરી નિશ્ચિત કરે છે.

$$\operatorname{PbCl}_2 + 2\operatorname{KI} \to \operatorname{PbI}_2 + 2\operatorname{KCI}$$
 (ગરમ દ્રાવણ) પીળા અવક્ષેપ

^{*} અહીંયા, જે ધનાયનો અભ્યાસક્રમમાં છે તે જ આપ્યા છે.

આ પીળા અવક્ષેપ (PbI₂) ઉકળતા પાણીમાં દ્રાવ્ય થાય છે અને ઠંડા પાડતાં ચળકતા સ્ફ્રટિક સ્વરૂપે પુનઃ પ્રાપ્ત થાય છે.

2. પોટેશિયમ ક્રોમેટનું (K_2CrO_4) દ્રાવશ ઉમેરવાથી લેડ ક્રોમેટના પીળા અવક્ષેપ મળે છે, જે Pb^{2+} આયનની હાજરી નિશ્ચિત કરે છે.

$$PbCl_{2}$$
 + $K_{2}CrO_{4}$ \rightarrow $PbCrO_{4}$ + $2KCl$ (ગરમ દ્રાવણ) લેડ ક્રોમેટ (પીળા અવક્ષેપ)

આ પીળા અવક્ષેપ (PbCrO₄) ગરમ NaOHના દ્રાવણમાં દ્રાવ્ય હોય છે.

$$PbCrO_4 + 4NaOH \implies Na_2[Pb(OH)_4] + Na_2CrO_4$$
 સોડિયમ ટેટ્રા - હાઈડ્રૉકસોપ્લમ્બેટ(II)

3. આલ્કોહૉલ અને ત્યારબાદ મંદ H_2SO_4 ઉમેરવાથી, લેડ સલ્ફેટના ($PbSO_4$) સફેદ અવક્ષેપ બને છે.

$$\operatorname{PbCl}_2 + \operatorname{H}_2\operatorname{SO}_4 \to \operatorname{PbSO}_4 + 2\operatorname{HCl}$$
 લેડ સલ્ફેટ (સફેદ અવક્ષેપ)

લેડ સલ્ફેટ, એમોનિયમ એસિટેટ દ્રાવણમાં દ્રાવ્ય છે, કારણ કે તેઓની વચ્ચે પ્રક્રિયા થઈ ટેટ્રાએસિટોપ્લમ્બેટ(II) આયન બને છે. એસિટિક ઍસિડના થોડા ટીપાં ઉમેરવાથી પ્રક્રિયા સરળતાથી આગળ વધી શકે છે.

PbSO
$$_4$$
 + 4CH $_3$ COONH $_4$ → (NH $_4$) $_2$ [Pb(CH $_3$ COO) $_4$] + (NH $_4$) $_2$ SO $_4$ એમોનિયમ ટેટ્રાએસિટોપ્લમ્બેટ (II)

(III) સમૂહ - II ના ધનાયનોનું પૃથક્કરણ

જો સમૂહ - I ગેરહાજર હોય, તો તે જ કસનળીમાં વધુ પાણી ઉમેરો. દ્રાવણને સહેજ ગરમ કરો

અને તેમાં 1-2 મિનિટ માટે H_2S વાયુ પસાર કરો (આકૃતિ 7.8). કસનળીને હલાવો. જો અવક્ષેપ જોવા મળે, તો તે સમૂહ - II ના ધનાયનોની હાજરી સૂચવે છે. હવે તે દ્રાવણમાં વધુ H_2S વાયુ પસાર કરો, જેથી સંપૂર્ણ અવક્ષેપન થાય. આ અવક્ષેપને અલગ તારવી લો. જો અવક્ષેપ કાળા રંગના હોય, તો તે Cu^{2+} અથવા Pb^{2+} આયનોની હાજરી સૂચવે છે. જો અવક્ષેપ પીળા રંગના હોય તો તે As^{3+} ની હાજરી સૂચવે છે.

સમૂહ - II ના અવક્ષેપને કસનળીમાં લો અને તેમાં વધુ પ્રમાણમાં પીળા એમોનિયમ સલ્ફાઈડના દ્રાવણને ઉમેરો. કસનળીને હલાવો. જો અવક્ષેપ અદ્રાવ્ય રહે, તો સમૂહ II - A (કોપર સમૂહ) હાજર છે. જો અવક્ષેપ દ્રાવ્ય થાય, તો તે સમૂહ II - B ની (આર્સેનિક સમૂહ) હાજરી સૂચવે છે.

સમૂહ II-A અને સમૂહ II-B ની નિર્ણાયક કસોટીઓ કોષ્ટક 7.13માં આપેલી છે.

આકૃતિ 7.8: H_2S વાયુ બનાવવા માટે કિપનું ઉપકરણ

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

કોષ્ટક 7.13 : સમૂહ II-A અને સમૂહ II-B ના ધનાયનોની નિર્ણાયક કસોટીઓ

જો અવક્ષેપ ન મળે, તો વધુ

પ્રમાણમાં એમોનિયમ

હાઇડ્રૉકસાઇડનું દ્રાવશ

ઉમેરો. વાદળી રંગનું દ્રાવશ

મળે છે. તેને એસિટિક

ઍસિડ વડે ઍસિડિક કરો

ફેરોસાયનાઇડનું દ્રાવશ

ઉમેરો. અહીં કથ્થાઈ

પોટેશિયમ

સમૂહ II-A ના (Pb²+, Cu²+) કાળા અવક્ષેપ મળે છે, જે પીળા એમોનિયમ સલ્ફાઈડમાં અદ્રાવ્ય હોય છે.

સમૂહ II-A ના અવક્ષેપને મંદ નાઈટ્રિક ઍસિડ સાથે ઉકાળો અને તેમાં આલ્કોહૉલના થોડા ટીપાં અને મંદ ${
m H}_2{
m SO}_4$ ઉમેરો.

સફેદ અવક્ષેપ Pb²⁺ આયનની હાજરી નિશ્ચિત કરે છે. અવક્ષેપને એમોનિયમ એસિટેટના દ્રાવણમાં દ્રાવ્ય કરો. આ દ્રાવણને એસિટિક ઍસિડ વડે ઍસિડિક કરી તેને બે ભાગમાં વહેંચો:

- (i) પહેલા ભાગમાં પોટેશિયમ ક્રોમેટનું દ્રાવણ ઉમેરો, પીળા અવક્ષેપ ઉત્પન્ન થાય છે.
- (ii) બીજા ભાગમાં પોટેશિયમ આયોડાઈડનું દ્રાવણ ઉમેરો પીળા અવક્ષેપ ઉત્પન્ન થાય છે.

જો પીળા અવક્ષેપ મળે અને તે પીળા એમોનિયમ સલ્ફાઈડના દ્રાવણમાં દ્રાવ્ય હોય, તો As³+ આયન હાજર હોય.

આ દ્રાવશને મંદ HCl વડે ઍિસડિક બનાવો. તેથી પીળા અવક્ષેપ મળે છે. અવક્ષેપને સાંદ્ર નાઈટ્રિક ઍિસડ સાથે ગરમ કરો અને તેમાં એમોનિયમ મોલિબ્ડેટનું દ્રાવશ ઉમેરો. તેથી આછા પીળા રંગના અવક્ષેપ ઉત્પન્ન થાય છે.

ળા ચોકલેટ રંગના અવક્ષેપ છે. મળે છે. યમ ^મણ

અને

સમૂહ - II A (કૉપર સમૂહ)

સમૂહ - II Aના ઘનાયનોની નિર્ણાયક કસોટીનું રસાયણવિજ્ઞાન

1. લેડ આયનની (Pb²+) કસોટી

લેડ સલ્ફાઈડના અવક્ષેપ મંદ $\mathrm{HNO_3}$ માં દ્રાવ્ય થાય છે. આ દ્રાવણમાં મંદ $\mathrm{H_2SO_4}$ અને આલ્કોહૉલના થોડા ટીંપા ઉમેરતાં લેડ સલ્ફેટના સફેદ અવક્ષેપ મળે છે. તે લેડ આયનની હાજરી સુચવે છે.

 $3PbS + 8HNO_3 \rightarrow 3Pb (NO_3)_2 + 2NO + 4H_2O + 3S$ $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 + 2HNO_3$

આ સફેદ અવક્ષેપને એમોનિયમ એસિટેટના દ્રાવણમાં ઉકાળતા ઓગળે છે. જ્યારે આ દ્રાવણને એસિટિક ઍસિડ વડે ઍસિડિક બનાવીને તેમાં પોટેશિયમ ક્રોમેટનું દ્રાવણ ઉમેરતાં PbCrO₄ ના પીળા અવક્ષેપ મળે છે. જો પોટેશિયમ આયોડાઈડનું દ્રાવણ ઉમેરવામાં આવે, તો લેડ આયોડાઈડના પીળા અવક્ષેપ મળે છે.

$$\begin{split} & PbSO_{4} + 4CH_{3}COONH_{4} \rightarrow (NH_{4})_{2}[Pb(CH_{3}COO)_{4}] + (NH_{4})_{2}SO_{4} \\ & (NH_{4})_{2}\left[Pb(CH_{3}COO)_{4}\right] + K_{2}CrO_{4} \rightarrow PbCrO_{4} + 2CH_{3}COOK + 2(NH_{4})_{2}SO_{4} \end{split}$$

એમોનિયમ પીળા ટેટ્રાએસિટોપ્લમ્બેટ (II) અવક્ષેપ

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

2. કોપર આયનની (Cu²+) કસોટી

(a) કૉપર સલ્ફાઈડ, નાઇટ્રિક ઍસિડમાં દ્રાવ્ય થાય છે કારણ કે તેમની વચ્ચે પ્રક્રિયા થઈ કૉપર નાઇટ્રેટ બને છે.

$$3\text{CuS} + 8\text{HNO}_3 \rightarrow 3\text{Cu(NO}_3)_2 + 2\text{NO} + 3\text{S} + 4\text{H}_2\text{O}$$

પ્રક્રિયા મિશ્રણને લાંબો સમય ગરમ કરવાથી સલ્ફરનું સલ્ફેટમાં ઑકિસડેશન થાય છે અને કૉપર સલ્ફેટ બને છે. જે દ્રાવણને વાદળી રંગનું બનાવે છે. થોડા જથ્થામાં ઉમેરેલા NH₄OH બેઝિક કૉપર સલ્ફેટના અવક્ષેપ ઉત્પન્ન કરે છે. જે વધુ એમોનિયમ હાઇડ્રૉકસાઈડમાં ટેટ્રાએમાઈન કૉપર (II) સંકીર્ણ બનવાના કારણે દ્રાવ્ય થાય છે.

$$\begin{split} \text{S} + 2\text{HNO}_3 &\to \text{H}_2\text{SO}_4 + 2\text{NO} \\ 2\text{Cu}^{2+} + \text{SO}_4^{2-} + 2\text{NH}_3 + 2\text{H}_2\text{O} &\to \text{Cu}(\text{OH})_2.\text{CuSO}_4 + 2\text{NH}_4^+ \\ \text{Cu}(\text{OH})_2.\text{CuSO}_4 + 8\text{NH}_3 &\to 2 \ [\text{Cu}(\text{NH}_3)_4]\text{SO}_4 + 2\text{OH}^- + \text{SO}_4^{2-} \\ &\quad \qquad \qquad \qquad \qquad \\ \grave{\text{ટદ્રાએમાઈન ક્રૉપર (II)}} \\ &\quad \qquad \qquad \qquad \qquad \qquad \\ \text{સલ્ફેટ (ઘેરો વાદળી)} \end{split}$$

(b) આ વાદળી દ્રાવણને એસિટિક ઍસિડ વડે ઍસિડિક કરી તેમાં પોટેશિયમ ફેરોસાયનાઈડનું $[K_4Fe(CN)_6]$ દ્રાવણ ઉમેરતાં કોપર ફેરોસાયનાઈડ $Cu_2[Fe(CN)_6]$ બનવાના કારણે દ્રાવણ ચોકલેટ રંગનું બને છે.

$$\begin{split} & [\text{Cu(NH}_3)_4]\text{SO}_4 + 4\text{CH}_3\text{COOH} \to \text{CuSO}_4 + 4\text{CH}_3\text{COONH}_4 \\ & 2\text{CuSO}_4 + \text{K}_4[\text{Fe(CN)}_6] \quad \to \quad \text{Cu}_2[\text{Fe(CN)}_6] \quad + \quad 2\text{K}_2\text{SO}_4 \\ & \quad \text{પોટેશિયમ} \qquad \qquad \text{કૉપર} \\ & \quad \text{હેકઝાસાયનોફેરેટ(II)} \qquad \text{હેકઝાસાયનોફેરેટ(II)} \\ & \quad (ચોકલેટ કથ્થાઈ અવક્ષેપ) \end{split}$$

સમૂહ - II B (આર્સેનિક સમૂહ)

જો સમૂહ - II ના અવક્ષેપ પીળા એમોનિયમ સલ્ફાઈડમાં દ્રાવ્ય થાય અને દ્રાવણ પીળા રંગનું રહે, તો તે As^{3+} આયનની હાજરી સૂચવે છે. As_2S_3 ના વિયોજનથી એમોનિયમ થાયોઆર્સેનાઈડ બને છે. જે મંદ HCI સાથે વિઘટન પામી આર્સેનિક (V) સલ્ફાઈડના પીળા અવક્ષેપ બનાવે છે. આ અવક્ષેપને સાંદ્ર નાઈટ્રિક ઍસિડ સાથે ગરમ કરવાથી બનતા આર્સેનિક ઍસિડના કારણે તે દ્રાવ્ય થાય છે. આ પ્રક્રિયા મિશ્રણમાં એમોનિયમ મોલિબ્ડેટનું દ્રાવણ ઉમેરતાં આછા પીળા રંગના અવક્ષેપ મળે છે. આ As^{3+} આયનની હાજરી નિશ્ચિત કરે છે.

$$As_2S_3 + 3 (NH_4)_2S_2 \rightarrow 2 (NH_4)_3AsS_4 + S$$
 પીળો એમોનિયમ સલ્ફાઈડ
$$2(NH_4)_3AsS_4 + 6HCI \rightarrow As_2S_5 + 3H_2S + 6NH_4CI$$
 $3As_2S_5 + 10HNO_3 + 4H_2O \rightarrow 6H_3AsO_4 + 10NO + 15S$ આર્સેનિક

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

 $H_3AsO_4 + 12(NH_4)_2 MoO_4 + 21HNO_3 \rightarrow (NH_4)_3[As(Mo_3O_{10})_4] + 21NH_4NO_3 + 12H_2O$ અર્સિનિક એમોનિયમ એમોનિયમ

ઍસિડ મોલિબ્ડેટ આર્સિનોમોલિબ્ડેટ (પીળા અવક્ષેપ)

(IV) સમૂહ - IIIના ધનાયનોનું પૃથક્કરણ

જો સમૂહ - II ગેરહાજર હોય, તો મૂળ દ્રાવણ લો અને તેમાં સાંદ્ર HNO₃ના 2-3 ટીંપા ઉમેરો, જેથી જો તેમાં Fe^{2+} હોય, તો તે Fe^{3+} માં ઑકિસડેશન પામી શકે. આ દ્રાવણને થોડી મિનિટ માટે ગરમ કરો. દ્રાવણને ઠંડુ પાડયા બાદ, તેમાં થોડા પ્રમાણમાં ઘન એમોનિયમ કલોરાઈડ (NH_4CI) ઉમેરી, એમોનિયાની વાસ આવે, ત્યાં સુધી તેમાં વધુ પ્રમાણમાં એમોનિયમ હાઇડ્રૉકસાઈડનું (NH_4OH) દ્રાવણ ઉમેરો. કસનળીને હલાવો. જો કથ્થાઈ અથવા સફેદ રંગના અવક્ષેપ મળે તો તે સમૂહ - III ના ધનાયનોની હાજરી સૂચવે છે. સમૂહ IIIના ધનાયનોની નિર્ણાયક કસોટીઓને કોષ્ટક 7.14માં સંક્ષિપ્ત રીતે દર્શાવેલ છે.

અવક્ષેપના રંગ અને તેની પ્રકૃતિનું અવલોકન કરો. શ્લેષીય (gelatinous) સફેદ અવક્ષેપ એલ્યુમિનિયમ આયન (AI^{3+}) ની હાજરીનું સૂચન કરે છે. જો અવક્ષેપ કથ્થાઈ રંગના હોય, તો તે ફેરિક આયનની (Fe^{3+}) હાજરી સૂચવે છે.

કોષ્ટક 7.14 : સમૃહ - III ના ધનાયનોની નિર્ણાયક કસોટીઓ

કથ્થાઈ અવક્ષેપ Fe ³⁺	સફેદ અવક્ષેપ Al³+
અવક્ષેપને મંદ HCIમાં દ્રાવ્ય કરો અને દ્રાવણના બે ભાગ પાડો. (a) પહેલા ભાગમાં પોટેશિયમ ફેરોસાયનાઈડનું દ્રાવણ (પોટેશિયમ હેકઝાસાયનોફેરેટ(III)) ઉમેરો. વાદળી અવક્ષેપ / રંગ જોવા મળે છે. (b) બીજા ભાગમાં પોટેશિયમ થાયોસાયનેટનું દ્રાવણ ઉમેરો. લોહી જેવો લાલ રંગ જોવા મળે છે.	અવક્ષેપને મંદ HClમાં દ્રાવ્ય કરો અને દ્રાવણના બે ભાગ પાડો. (a) પહેલા ભાગમાં સોડિયમ હાઇડ્રૉકસાઈડ ઉમેરો અને ગરમ કરો. સફેદ શ્લેષીય અવક્ષેપ વધુ સોડિયમ હાઇડ્રૉકસાઈડના દ્રાવણમાં દ્રાવ્ય થાય છે. (b) બીજા ભાગમાં સૌ પ્રથમ વાદળી લિટમસનું દ્રાવણ ઉમેરો અને કસનળીની દીવાલને અડકાડીને ટીપે ટીપે એમોનિયમ હાઇડ્રૉકસાઈડનું દ્રાવણ ઉમેરો. તેથી રંગવિહીન દ્રાવણમાં વાદળી તરતું દ્રવ્ય જોવા મળે છે.

સમૂહ - IIIના ધનાયનોની નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

જ્યારે મૂળ દ્રાવણને સાંદ્ર નાઇટ્રિક ઍસિડ સાથે ગરમ કરવામાં આવે છે, ત્યારે તેમાં જો ફેરસ આયન હાજર હોય, તો તે ફેરિક આયનમાં ઑક્સિડેશન પામે છે.

$$2FeCl_2 + 2HCl + [O] \rightarrow 2FeCl_3 + H_2O$$

ત્રીજા સમૂહના ધનાયનો તેના હાઇડ્રૉકસાઈડ તરીકે અવક્ષેપિત થાય છે. જે મંદ હાઇડ્રૉકલોરિક ઍસિડમાં તેઓના અનુવર્તી કલોરાઈડ બનવાને કારણે દ્રાવ્ય થાય છે.

1. એલ્યુમિનિયમ આયનની (Al³+) કસોટી

(a) જ્યારે એલ્યુમિનિયમ કલોરાઈડ ધરાવતાં દ્રાવણની પ્રક્રિયા સોડિયમ હાઇડ્રૉકસાઈડ સાથે કરવામાં

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

આવે છે, ત્યારે એલ્યુમિનિયમ હાઇડ્રૉકસાઇડના સફેદ શ્લેષીય અવક્ષેપ બને છે. જે વધુ સોડિયમ હાઇડ્રૉકસાઈડના દ્રાવણમાં સોડિયમ એલ્યુમિનેટ બનવાના કારણે દ્રાવ્ય હોય છે.

AlCl
$$_3$$
 + 3NaOH \rightarrow Al(OH) $_3$ + 3NaCl Al(OH) $_3$ + NaOH \rightarrow NaAlO $_2$ + 2H $_2$ O સફેદ શ્લેષીય સોડિયમ અવક્ષેપ એલ્યુમિનેટ

(b) બીજી કસોટીમાં જ્યારે દ્રાવણમાં વાદળી લિટમસપત્ર નાંખવામાં આવે છે, ત્યારે દ્રાવણ ઍસિડિક હોવાથી તે લાલ રંગનું બને છે. તેમાં ટીપે ટીપે NH₄OH નું દ્રાવણ ઉમેરવાથી દ્રાવણ બેઝિક બને છે અને એલ્યુમિનિયમ હાઇડ્રૉકસાઈડ અવક્ષેપિત થાય છે. એલ્યુમિનિયમ હાઇડ્રૉકસાઈડ અવક્ષેપિત થાય છે. એલ્યુમિનિયમ હાઇડ્રૉકસાઇડ દ્રાવણમાંથી વાદળી રંગનું શોષણ કરે છે અને 'લેક' નામનું અદ્રાવ્ય અધિશોષિત સંકીર્ણ બનાવે છે. આમ, રંગવિહીન દ્રાવણમાં વાદળી રંગનું તરતું દ્રવ્ય જોવા મળે છે. તેથી આ કસોટીને લેક કસોટી કહેવામાં આવે છે.

2. ફેરિક આયનની (Fe^{3+}) કસોટી

ફેરિક હાઇડ્રૉકસાઈડના લાલાશ પડતા કથ્થાઈ અવક્ષેપ હાઇડ્રૉકલોરિક ઍસિડમાં ઓગળે છે અને ફેરિક ક્લોરાઇડ બને છે.

$$Fe(OH)_3 + 3HC1 \rightarrow FeCl_3 + 3H_2O$$

(a) જ્યારે ફેરિક ક્લોરાઈડ ધરાવતા દ્રાવણની પોટેશિયમ ફેરોસાયનાઈડ દ્રાવણ સાથે પ્રક્રિયા કરવામાં આવે છે, ત્યારે વાદળી અવક્ષેપ / રંગ મળે છે. આ અવક્ષેપનો રંગ પ્રુસિયન બ્લુ (Prussian blue) હોય છે. તે ફેરિક ફેરોસાયનાઇડ છે. આ પ્રક્રિયા નીચે દર્શાવ્યા મુજબ થાય છે:

$$4 \text{FeCl}_3 + 3 \text{K}_4 [\text{Fe(CN)}_6] \rightarrow \text{Fe}_4 [\text{Fe(CN)}_6]_3 + 12 \text{KCI}$$
 પોટેશિયમ પ્રુસિયન બ્લુ ફેરોસાયનાઈડ અવક્ષેપ

જો પોટેશિયમ હેકઝાસાયનોફ્રેરેટ(II) ને (એટલે કે પોટેશિયમ ફ્રેરોસાયનાઇડ) વધુ પ્રમાણમાં ઉમેરવામાં આવે, તો KFe [Fe(CN)₆] સંયોજન નીપજ તરીકે બને છે. આ કલિલ દ્રાવણ (દ્રાવ્ય પ્રૂસિયન બ્લુ) બનાવે છે અને તેનું ગાળણ કરી શકાતું નથી.

$$[FeCl_3 + K_4[Fe(CN)_6] \rightarrow KFe[Fe(CN)_6] + 3KC]$$

(દ્રાવ્ય પ્રુસિઅન બ્લુ)

(b) દ્રાવણના બીજા ભાગમાં પોટેશિયમ થાયોસાયનેટ (પોટેશિયમ સલ્ફ્રોસાયનાઇડ) ઉમેરો. લોહી જેવા લાલ રંગનું ઉત્પન્ન થવું Fe³⁺ આયનની હાજરી નિશ્ચિત કરે છે.

(V) સમૂહ - IVના ધનાયનોનું પૃથક્કરણ

જો સમૂહ - III ગેરહાજર હોય, તો સમૂહ - III ના દ્રાવણમાં H_2S વાયુ થોડી મિનિટ માટે પસાર કરો. જો અવક્ષેપ (સફેદ, કાળા અથવા માંસવર્શી) મળે, તો તે સમૂહ - IV ના ધનાયનોની

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

હાજરી સૂચવે છે. કોપ્ટક 7.15 સમૂહ-IVના ધનાયનોની નિર્ણાયક કસોટીઓને સંક્ષિપ્તમાં દર્શાવે છે.

કોષ્ટક 7.15 : સમૂહ-IVના ધનાયનોની નિર્ણાયક કસોટીઓ

સફેદ અવક્ષેપ	માંસવર્ણી અવક્ષેપ	કાળા અવક્ષેપ
$(\mathbf{Z}\mathbf{n}^{2+})$	(Mn ²⁺)	(Ni ²⁺ , Co ²⁺)
અવક્ષેપને મંદ HCl માં ઉકાળીને દ્રાવ્ય કરો. આ દ્રાવશને બે ભાગમાં વહેંચો : (a) પહેલા ભાગમાં સોડિયમ હાઇડ્રૉકસાઈડનું દ્રાવશ ઉમેરો. બનતા સફેદ અવક્ષેપ વધુ સોડિયમ હાઇડ્રૉકસાઈડના દ્રાવશમાં દ્રાવ્ય થાય છે, જે Zn²+ આયનની હાજરી નિશ્ચિત કરે છે. (b) બીજા ભાગને એમોનિયમ હાઇડ્રૉકસાઈડના દ્રાવશ વડે તટસ્થ કરો અને તેમાં પોટેશિયમ ફેરોસાયનાઇડનું દ્રાવશ ઉમેરો. વાદળી પડતાં સફેદ અવક્ષેપ ઉત્પન્ન થાય છે.	અવક્ષેપને મંદ HCI માં ઉકાળીને દ્રાવ્ય કરો. બાદમાં સોડિયમ હાઇડ્રૉકસાઈડના દ્રાવણને વધુ પ્રમાણમાં ઉમેરો. સફેદ અવક્ષેપ ઉત્પન્ન થાય છે, જેને રાખી મૂકવાથી કથ્થાઈ રંગમાં ફેરવાય છે.	અવક્ષેપને એકવારીજીયામાં દ્રાવ્ય કરો. દ્રાવણને શુષ્ક થાય ત્યાં સુધી, ગરમ કરો અને ઠંડુ પાડો. અવશેષને પાણીમાં દ્રાવ્ય કરો અને દ્રાવણને બે ભાગમાં વહેંચો. (a) દ્રાવણના પહેલા ભાગમાં દ્રાવણ બેઝિક થાય, ત્યાં સુધી એમોનિયમ હાઇડ્રૉકસાઈડનું દ્રાવણ ઉમેરો. ડાય મિથાઈલ ગ્લાયોકઝાઈમના થોડા ટીપાં ઉમેરો અને કસનળીને હલાવો. ચળકતા લાલ અવક્ષેપનું બનવુ Ni²+ આયનની હાજરી નિશ્ચિત કરે છે. (b) બીજા ભાગને એમોનિયમ હાઇડ્રૉકસાઈડના દ્રાવણ વડે તટસ્થ કરો. તેને એસિટિક ઍસિડ વડે ઍસિડિક બનાવો અને ઘન પોટેશિયમ નાઇટ્રાઈટ ઉમેરો. મળતા પીળા અવક્ષેપ Co²+ આયનની હાજરી નિશ્ચિત કરે છે.

સમૂહ - IV ના ધનાયનોની નિર્ણાયક કસોટીનું રસાયણવિજ્ઞાન

ચોથા સમૂહના ધનાયનો તેમના સલ્ફાઈડ તરીકે અવક્ષેપિત થાય છે. અવક્ષેપના રંગનું અવલોકન કરો. અવક્ષેપનો સફેદ રંગ ઝિંક આયનની હાજરી સૂચવે છે, માંસ જેવો (માસવર્ણી) રંગ મેંગેનીઝની હાજરી સૂચવે છે અને કાળો રંગ Ni^{2+} અથવા Co^{2+} ની હાજરી સૂચવે છે.

1. ઝિંક આયનની (Zn²+) કસોટી

ઝિંક સલ્ફાઈડ હાઈડ્રૉકલોરિક ઍસિડમાં દ્રાવ્ય થઈ ઝિંક કલોરાઈડ બનાવે છે.

$$ZnS + 2HCl \rightarrow ZnCl_2 + H_2S$$

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

(a) દ્રાવણમાં સોડિયમ હાઇડ્રૉકસાઈડનું દ્રાવણ ઉમેરવાથી ઝિંક હાઈડ્રૉકસાઈડના સફેદ અવક્ષેપ મળે છે, જે વધુ NaOH ના દ્રાવણમાં ગરમ કરવાથી દ્રાવ્ય થાય છે. તે Zn²+ આયનની હાજરી નિશ્ચિત કરે છે.

$$\operatorname{ZnCl}_2$$
 + 2NaOH \to $\operatorname{Zn(OH)}_2$ + 2NaCl $\operatorname{Zn(OH)}_2$ + 2NaOH \to Na $_2$ ZnO $_2$ + 2H $_2$ O સોડિયમ ઝિંકેટ

(b) જયારે દ્રાવશને NH_4OH નાં દ્રાવશ વડે તટસ્થ કર્યા બાદ તેમાં પોટેશિયમ ફેરોસાયનાઈડ $K_4[Fe(CN)_6]$ નું દ્રાવશ ઉમેરવામાં આવે છે, ત્યારે ઝિંક ફેરોસાયનાઈડના સફેદ અથવા વાદળી પડતાં સફેદ અવક્ષેપ મળે છે.

$$2ZnCl_2 + K_4[Fe(CN)_6] \rightarrow Zn_2[Fe(CN)_6] + 4KCl$$
 ઝિંક ફેરોસાયનાઈડ

2. મેંગેનીઝ આયનની (Mn²+) કસોટી

મેંગેનીઝ સલ્ફાઈડના અવક્ષેપને મંદ HCl માં ઉકાળીને દ્રાવ્ય કરો. NaOH ના દ્રાવણને વધુ પ્રમાણમાં ઉમેરવાથી મેંગેનીઝ હાઇડ્રૉકસાઈડના સફેદ અવક્ષેપ ઉત્પન્ન થાય છે, જે વાતાવરણીય ઑકિસડેશન દ્વારા જળયુક્ત મેંગેનીઝ ડાયૉકસાઈડમાં રૂપાંતર પામવાના કારણે કથ્થાઈ રંગના બને છે.

3. નિકલ આયનની (Ni²⁺) કસોટી

નિકલ સલ્ફાઈડના કાળા અવક્ષેપ એકવારીજીયામાં દ્રાવ્ય થાય છે અને નીચે જણાવેલી પ્રક્રિયા થાય છે :

$$3 {
m NiS} + 2 {
m HNO_3} + 6 {
m HCl}
ightarrow 3 {
m NiCl_2} + 2 {
m NO} + 3 {
m S} + 4 {
m H_2O}$$
 એકવારીજીયા સાથે પ્રક્રિયા કર્યા બાદ નિકલ કલોરાઈડ મળે છે, જે પાણીમાં દ્રાવ્ય હોય છે. નિકલ કલોરાઈડના જલીય દ્રાવણને ${
m NH_4OH}$ ઉમેરીને બેઝિક બનાવીને, તેમાં ડાયિમથાઈલ ગ્લાયોકઝાઈમ ઉમેરવામાં આવે, તો ચળકતા લાલ અવક્ષેપ મળે છે.

$$\begin{array}{c} \text{NiCl}_2 + 2\text{NH}_4\text{OH} + \\ \text{H}_3\text{C} - \text{C} = \text{N} - \text{OH} \\ \text{H}_3\text{C} - \text{C} = \text{N} - \text{OH} \\ \end{array} \\ \begin{array}{c} \text{H}_3\text{C} \\ \text{N} \\ \text{H}_3\text{C} \\ \end{array} \\ \begin{array}{c} \text{Ni} \\ \text{N} \\ \text{N} \\ \text{C} \\ \text{N} \\ \text{N} \\ \text{C} \\ \text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{C} \\ \text{CH}_3 \\ \text{O} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \end{array}$$

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

4. કોબાલ્ટ આયનની (Co²+) કસોટી

નિકલ સલ્ફાઈડની જેમ કોબાલ્ટ સલ્ફાઈડ પણ એકવારીજીયામાં દ્રાવ્ય થાય છે. જ્યારે એકવારીજીયાની પ્રક્રિયા થયા બાદ મળતા અવશેષના જલીય દ્રાવણને એમોનિયમ હાઇડ્રૉકસાઈડ વડે તટસ્થીકરણ કર્યાબાદ તેમાં પોટેશિયમ નાઇટ્રાઇટનું દ્રાવણ ઉમેરીને એસિટિક ઍસિડ વડે ઍસિડિક કરવામાં આવે, તો પોટેશિયમ હેકઝાનાઈટ્રાઈટોકોબાલ્ટેટ (III) નામના કોબાલ્ટના સંકીર્ણના પીળા અવક્ષેપ મળે છે.

$$\begin{split} \text{CoS} + \text{HNO}_3 + 3\text{HCI} &\rightarrow \text{CoCl}_2 + \text{NOCI} + \text{S} + 2\text{H}_2\text{O} \\ \text{CoCl}_2 + 7\text{KNO}_2 + 2\text{CH}_3\text{COOH} &\rightarrow \text{K}_3[\text{Co(NO}_2)_6] + 2\text{KCI} + 2\text{CH}_3\text{COOK} + \text{NO} + \text{H}_2\text{O} \\ &\qquad \qquad \text{પોટેશિયમ} \\ &\qquad \qquad \text{હેકઝાનાઈટ્રાઈટોકોબાલ્ટેટ(III)} \\ &\qquad \qquad (પીળા અવક્ષેપ) \end{split}$$

(VI) સમૂહ-Vના ધનાયનોનું પૃથક્કરણ

જો સમૂહ - IV ગેરહાજર હોય, તો મૂળ દ્રાવશ લો અને તેમાં થોડા પ્રમાશમાં ઘન $\mathrm{NH_4CI}$ અને વધુ પ્રમાશમાં $\mathrm{NH_4OH}$ નું દ્રાવશ ઉમેર્યા બાદ ઘન એમોનિયમ કાર્બોનેટ ($\mathrm{NH_4}$) $_2\mathrm{CO}_3$ ઉમેરો. જો સફેદ અવક્ષેપ મળે, તો તે સમૂહ - V ના ધનાયનોની હાજરી સૂચવે છે.

સફેદ અવક્ષેપને મંદ એસિટિક ઍસિડ સાથે ઉકાળીને દ્રાવ્ય કરો અને દ્રાવણને Ba^{2+} , Sr^{2+} અને Ca^{2+} આયનોના પરીક્ષણ માટે ત્રણ ભાગમાં વહેંચો. અવક્ષેપનો થોડો જથ્થો જ્યોત કસોટી માટે સાચવી રાખો. નિર્ણાયક કસોટીઓને સંક્ષિપ્તમાં કોષ્ટક 7.16 માં દર્શાવવામાં આવી છે.

કોષ્ટક 7.16 : સમૂહ - V ના ધનાયનોની નિર્ણાયક કસોટી

	અવક્ષેપને મંદ એસિટિક ઍસિડ સાથે ઉકાળીને દ્રાવ્ય કરો અને દ્રાવણને Ba²+, Sr²+ અને Ca²+ આયનોના પરીક્ષણ માટે ત્રણ ભાગમાં વહેંચો						
	Ba ²⁺ આયન	Sr ²⁺ આયન	Ca ²⁺ આયન				
દ્રાવ છે. (b) સા ^ર કસે	હલા ભાગમાં પોટેશિયમ ક્રોમેટનું વણ ઉમેરો. પીળા અવક્ષેપ મળે ચવી રાખેલા અવક્ષેપથી જ્યોત દોટી કરો. ઘાસ જેવા લીલા દાની જ્યોત મળે છે.	· ·	(a) જો બેરિયમ અને સ્ટ્રૉન્શિયમ ગેરહાજર હોય, તો દ્રાવણનો ત્રીજો ભાગ લો. તેમાં એમોનિયમ ઑકઝેલેટ દ્રાવણ ઉમેરો અને બરાબર હલાવો. કેલ્શિયમ ઑકઝેલેટના સફેદ અવક્ષેપ મળે છે.				
		(b) સાચવી રાખેલા અવક્ષેપથી જયોત કસોટી કરો. કિરમજી લાલ જયોત Sr ²⁺ આયનની હાજરી નિશ્ચિત કરે છે.	(b) સાચવી રાખેલા અવક્ષેપથી જયોત કસોટી કરો. ઇંટ જેવા લાલરંગની જયોત મળે છે, જેને વાદળી કાચથી જોતાં લીલાશ પડતી પીળી જોવા મળે છે. આ Ca ²⁺ આયનની હાજરી નિશ્ચિત કરે છે.				

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સમૂહ-Vના ધનાયનોની નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

સમૂહ - Vના ધનાયનો તેમના કાર્બોનેટ તરીકે અવક્ષેપિત થાય છે, જે એસિટિક ઍસિડમાં તેમના અનુવર્તી એસિટેટ બનવાના કારણે દ્રાવ્ય થાય છે.

1. બેરિયમ આયનની (Ba²+) કસોટી

(a) જ્યારે પાંચમા સમૂહના અવક્ષેપને એસિટિક ઍસિડમાં લઈને પોટેશિયમ ક્રોમેટના (K_2CrO_4) દ્રાવણ સાથે પ્રક્રિયા કરતાં, બેરિયમ ક્રોમેટના પીળા અવક્ષેપ મળે છે.

BaCO₃ + 2CH₃COOH
$$\rightarrow$$
 (CH₃COOH)₂ Ba + H₂O + CO₂
(CH₃COO)₂Ba + K₂CrO₄ \rightarrow BaCrO₄ + 2CH₃COOK
બેરિયમ ક્રોમેટ
(પીળા અવક્ષેપ)

(b) જયોત કસોટી: પ્લેટિનમનો તાર લો અને સાંદ્ર HCl માં ડુબાડો. તેને ત્યાં સુધી વધુ ગરમ કરો જયાં સુધી તે જયોતિહીન જયોતમાં રંગ આપવાનું બંધ કરી દે. હવે તારને સાંદ્ર HClમાં બનાવેલી અવક્ષેપની (સમૂહ-V) લુગદીમાં ડુબાડો. તેને જયોતમાં ગરમ કરો. ઘાસ જેવા લીલારંગની જયોત Ba²⁺ આયનની હાજરી નિશ્ચિત કરે છે.

2. સ્ટ્રૉન્શિયમ આયનની (Sr²⁺) કસોટી

(a) પાંચમા સમૂહના અવક્ષેપોનું એસિટિક ઍસિડમાં બનાવેલા દ્રાવશને એમોનિયમ સલ્ફેટના $[(NH_4)_2SO_4]$ દ્રાવશ સાથે ગરમ કરવાથી અને કસનળીની અંદરની દીવાલોને કાચના સળિયા વડે ઘસવાથી સ્ટ્રૉન્શિયમ સલ્ફેટના સફેદ અવક્ષેપ મળે છે.

$$SrCO_3 + 2CH_3COOH \rightarrow (CH_3COO)_2 Sr + H_2O + CO_2$$
 $(CH_3COO)_2 Sr + (NH_4)_2SO_4 \rightarrow SrSO_4 + 2CH_3COONH_4$ સ્ટ્રૉન્શિયમ સલ્ફેટ (સફેદ અવક્ષેપ)

(b) જયોત કસોટી : Ba^{2+} માં દર્શાવ્યા મુજબ જયોત કસોટી કરો. કિરમજી લાલ જયોત Sr^{2+} ની હાજરી નિશ્ચિત કરે છે.

3. કેલ્શિયમ આયનની (Ca²+) કસોટી

(a) પાંચમા સમૂહના અવક્ષેપોનું એસિટિક ઍસિડમાં બનાવેલુ દ્રાવણ એમોનિયમ ઑકઝેલેટના દ્રાવણ સાથે પ્રક્રિયા કરી સફેદ અવક્ષેપ આપે છે.

$$CaCO_3 + 2CH_3COOH \rightarrow (CH_3COO)_2 Ca + H_2O + CO_2$$
 ($CH_3COO)_2Ca + (NH_4)_2C_2O_4 \rightarrow (COO)_2Ca + 2CH_3COONH_4$ એમોનિયમ કેલ્શિયમ ઑક્ઝેલેટ સૉક્ઝેલેટ (સફેદ અવક્ષેપ)

(b) જયોત કસોટી : ઉપર જણાવ્યા મુજબ જયોત કસોટી કરો. કેલ્શિયમના કારણે ઇંટ જેવી લાલ જયોત મળે છે, જેને વાદળી કાચથી જોતાં લીલાશ પડતી પીળી જયોત દેખાય છે.

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

(VII) સમૂહ-VI ના ધનાયનોનું પૃથક્કરણ

જો સમૂહ – V ગેરહાજર હોય તો Mg^{2+} આયનની નીચે દર્શાવેલી કસોટી કરો.

સમૂહ- VI ના ધનાયનોની નિર્ણાયક કસોટીનું રસાયણિવજ્ઞાન મૅગ્નેશિયમ આયનની (Mg²+) કસોટી

(a) જો સમૂહ - V ગેરહાજર હોય, તો દ્રાવશમાં મૅગ્નેશિયમ કાર્બોનેટ હોઈ શકે છે, જે એમોનિયમ ક્ષારની હાજરીમાં પાણીમાં દ્રાવ્ય હોય છે, કારણ કે સંતુલન જમણી તરફ સ્થાનાંતર પામે છે.

$$NH_4^+ + CO_3^{2-} \rightleftharpoons NH_3^- + HCO_3^-$$

અવક્ષેપ ઉત્પન્ન કરવા માટે કાર્બોનેટ આયનોની જરૂરી સાંદ્રતા પ્રાપ્ત થતી નથી. જ્યારે ડાયસોડિયમ હાઇડ્રોજન ફોસ્ફેટનું દ્રાવણ ઉમેરવામાં આવે છે અને કસનળીની અંદરની દીવાલને કાચના સળિયા વડે ઘસવામાં આવે છે ત્યારે મૅગ્નેશિયમ એમોનિયમ ફોસ્ફેટના સફેદ અવક્ષેપ મળે છે, જે Mg^{2+} આયનની હાજરી સૂચવે છે.

 $\label{eq:Mg2+Na2+PO4+NH4OH+2Na++H2O} \text{Mg}^{2+} + \text{Na}_2\text{HPO}_4 \to \text{Mg}^{(\text{NH}_4)\text{PO}_4} + \text{NH}_4\text{OH} + 2\text{Na}^+ + \text{H}_2\text{O}$ મેંગ્નેશિયમ એમોનિયમ

ફોસ્ફેટ (સફેદ અવક્ષેપ)

ગુણાત્મક પૃથક્કરણના અવલોકનો અને અનુમાનોને પછીના પાનામાં પ્રશ્નોની યાદી પછી દર્શાવેલા નમૂનાની નોંધ (specimen record) મુજબ કોષ્ટક સ્વરૂપે નોંધો.

નોંધ ઃ

કેટલીકવાર મૅગ્નેશિયમ એમોનિયમ ફોસ્ફેટના અવક્ષેપ થોડા સમય બાદ જોવા મળે છે. તેથી સોડિયમ હાઇડ્રોજન ફોસ્ફેટનું દ્રાવણ ઉમેર્યા બાદ દ્રાવણને ગરમ કરો અને કસનળીની અંદરની દીવાલને ઘસો.

સાવચેતીઓ

FEGGGGGGGGG

- (a) રસાયણિવજ્ઞાનની પ્રયોગશાળામાં કામ કરતી વખતે હંમેશા એપ્રોન, આંખ રક્ષક તરીકે ચશ્મા અને હાથના મોજાંનો ઉપયોગ કરો.
- (b) કોઈપણ પ્રક્રિયક કે રસાયણનો ઉપયોગ કરતા પહેલા બોટલ પરના લેબલને કાળજીપૂર્વક વાંચો. લેબલ વિનાના પ્રક્રિયકનો ઉપયોગ કરવો નહિ.
- (c) રસાયણો અને પ્રક્રિયકોને બિનજરૂરી રીતે મિશ્ર ન કરો. કોઈપણ રસાયણનો સ્વાદ ચાખશો નહિ.
- (d) રસાયણો કે બાષ્યને સુંઘતી વખતે સાવચેતી રાખો. બાષ્યને હંમેશા હાથ વડે પવન નાંખીને ધીમેથી તમારા નાક સુધી પહોંચાડો (આકૃતિ 7.9).
- (e) સોડિયમ ધાતુને પાણીમાં નાંખશો નહિ કે સિંક અથવા કચરાપેટીમાં ફેંકશો નહિ.
- (f) મંદન માટે હંમેશા પાણીમાં ઍસિડ ઉમેરો. ઍસિડમાં પાણી નહિ.
- (g) જયારે કસનળીને ગરમ કરો, ત્યારે સાવચેતી રાખો. ગરમ કરતી વખતે કે પ્રક્રિયક ઉમેરતી વખતે, કસનળીનું મુખ તમારી કે તમારા પડોશી તરફ રાખવું જોઈએ નહિ.

આકૃતિ 7.9 : વાયુને કેવી રીતે સૂંઘશો

111

- (h) વિસ્ફોટક સંયોજનો, જવલનશીલ પદાર્થો, ઝેરી વાયુઓ, વિદ્યુત ઉપકરણો, કાચના પાત્રો, જ્યોત અને ગરમ પદાર્થોનો ઉપયોગ કરતી વખતે સાવચેતી રાખો.
- (i) તમારા કાર્યસ્થળને સાફ રાખો. કાગળ અને કાચને સિંકમાં નાખશો નહિ. તે માટે હંમેશા કચરાપેટીનો ઉપયોગ કરો.
- (j) પ્રયોગશાળાનું કાર્ય પૂર્શ થયા બાદ હંમેશા તમારા હાથ ધુઓ.
- (k) હંમેશા પ્રક્રિયકના ઓછામાં ઓછા જથ્થાનો ઉપયોગ કરો. પ્રક્રિયકનો વધુ ઉપયોગ માત્ર રસાયણોનો બગાડ જ નહિ પણ પર્યાવરણને નુકસાન પણ પહોંચાડે છે.

ચર્ચાત્મક પ્રશ્નો

- (i) ગુણાત્મક અને જથ્થાત્મક પૃથક્કરણ વચ્ચે શું તફાવત છે ?
- (ii) શું આપણે જ્યોત કસોટી કરવા માટે પ્લેટિનમ તારના બદલે કાચનો સળિયો વાપરી શકીએ ? તમારો ઉત્તર સમજાવો.
- (iii) જ્યોત કસોટી માટે અન્ય ધાતુઓની સાપેક્ષે પ્લેટિનમ ધાતુને શા માટે અગ્રિમતા આપવામાં આવે છે ?
- (iv) મંદ H₂SO₄ ની મદદથી પારખી શકાતા હોય, તેવા ઋશાયનોના નામ જણાવો.
- (v) ઋશાયનોની કસોટી માટે મંદ HCl ની સાપેક્ષે મંદ H_2SO_4 ને શા માટે અગ્રિમતા આપવામાં આવે છે ?
- (vi) સાંદ્ર H₂SO₄ વડે પારખી શકાતા ઋણાયનોના નામ લખો.
- (vii) સોડિયમ કાર્બોનેટ નિષ્કર્ષ કેવી રીતે તૈયાર કરવામાં આવે છે ?
- (viii) ચૂનાનું પાણી એટલે શું ? તેમાં કાર્બન ડાયૉકસાઈડ વાયુ પસાર કરવાથી શું થાય છે ?
- (ix) કાર્બન ડાયૉકસાઈડ અને સલ્ફર ડાયૉકસાઈડ બંને વાયુઓ ચૂનાના પાણીને દૂધિયુ બનાવે છે. તમે તે બંને વચ્ચેનો ભેદ કેવી રીતે પારખશો ?
- (x) તમે કાર્બોનેટ આયનની હાજરીની કસોટી કેવી રીતે કરશો ?
- (xi) નાઈટ્રેટ માટેની વીંટી કસોટીમાં બે સ્તરોના સંગમ સ્થાને રચાતી ઘેરા કથ્થાઈ રંગની વીંટીનું સંઘટન (Composition) શું હોય છે ?
- (xii) સોડિયમ નાઇટ્રૉપ્રુસાઈડ કસોટી દ્વારા નિશ્ચિત થતા આયનના નામ જણાવો.
- (xiii) ક્રોમાઈલ કલોરાઈડ કસોટી એટલે શું ? તમે CrO₂Cl₂ ના ઍસિડિક સ્વભાવનું વાજબીપણું કેવી રીતે નક્કી કરશો ?
- (xiv) બ્રોમાઈડ અને આયોડાઈડ ક્રોમાઈલ ક્લોરાઈડ જેવી કસોટીઓ શા માટે નથી આપતા ?
- (xv) બ્રોમાઈડ અને આયોડાઈડ આયનો માટેની સ્તર કસોટી વર્ણવો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

ક્ષારના પૃથક્કરણ માટે નમૂનાની નોંધ

હેતુ :

આપેલા ક્ષારમાં રહેલા એક ધનાયન અને એક ઋશાયનને જાશવા માટે પૃથક્કરણ કરવું.

જરૂરી સામગ્રી:

• ઉત્કલન નળીઓ, કસનળીઓ, કસનળી હોલ્ડર, કસનળી સ્ટેન્ડ, નિકાસ નળી, કોર્ક, ગાળણપત્ર, પ્રક્રિયકો

ક્રમ	પ્રયોગ	અવલોકન	અનુમાન
1.	આપેલા ક્ષારનો રંગ નોંધ્યો.	સફેદ	Cu ²⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , Mn ²⁺ ગેરહાજર છે.
2.	ક્ષારની વાસ નોંધી.	કોઈ વિશિષ્ટ વાસ નથી.	S²-, SO₃²-, CH₃COO- ગેરહાજર હોઈ શકે છે.
3.	0.5 g ક્ષારને શુષ્ક કસનળીમાં ગરમ કર્યો અને ઉત્પન્ન થતાં વાયુનો રંગ નોંધ્યો તથા અવશેષના રંગને ગરમ અને ઠંડી સ્થિતિમાં નોંધ્યો.	(i) કોઈ વાયુ નીકળ્યો નહિ (ii) ગરમ અને ઠંડી સ્થિતિમાં અવશેષના રંગમાં કોઈ ફેરફાર જોવા મળ્યો નથી.	 (i) CO₃^{2−} હાજર હોઈ શકે છે. NO₃[−], NO₂[−], Br[−] ગેરહાજર હોઈ શકે છે. (ii) Zn²⁺ ગેરહાજર હોઈ શકે છે. શકે છે.
4.	ક્ષારની સાંદ્ર HCl સાથે લુગદી બનાવી અને જ્યોત કસોટી કરી.	જ્યોતમાં કોઈ વિશેષ રંગ જોવા મળ્યો નહિ.	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Cu ²⁺ ગેરહાજર હોઈ શકે છે.
5.	ક્ષારનો રંગ સફ્રેદ હોવાથી બોરેકસ મણકા કસોટી કરી નહિ.	-	-
6.	$0.1 { m g}$ ક્ષારને $1 { m mL}$ મંદ ${ m H_2SO_4}$ સાથે ગરમ કર્યો.	ઊભરા જોવા મળતા નથી અને કોઈ બાષ્ય નીકળી નહિ.	CO ₃ ²⁻ , SO ₃ ²⁻ , S ²⁻ , NO ₂ ⁻ CH ₃ COO ⁻ ગેરહાજર
7.	$0.1~{ m g}$ ક્ષારને $1~{ m mL}$ સાંદ્ર ${ m H_2SO_4}$ સાથે ગરમ કર્યો.	કોઈ વાયુ ઉત્પન્ન થયો નહિ.	Cl⁻, Br⁻, l⁻, NO₃, C₂O₄²⁻ ગેરહાજર
8.	1 mL ક્ષારના જલીય દ્રાવણને સાંદ્ર HNO ₃ વડે ઍસિડિક કર્યું. આ મિશ્રણને ગરમ કરી તેમાં 4 - 5 ટીપાં એમોનિયમ મોલિબ્ડેટ દ્રાવણના ઉમેર્યા.	પીળા અવક્ષેપ પ્રાપ્ત થયા નહિ.	PO ₄ ગેરહાજર

પધ્ધતિસર ગુણાત્મક પૃથક્કરણ

9.	ક્ષારના જલનિષ્કર્ષને મંદ HCl વડે ઍસિડિક બનાવી તેમાં 2mL BaCl ₂ નું દ્રાવશ ઉમેર્યુ.	સફેદ અવક્ષેપ મળ્યા જે સાંદ્ર HNO ₃ અને સાંદ્ર HCl માં અદ્રાવ્ય રહે છે.	SO_4^{2-} હાજર
10.	0.1 g ક્ષારને 2 mL NaOH નાં દ્રાવણ સાથે ગરમ કરો.	એમોનિયા વાયુ ઉત્પન્ન થયો નહિ.	NH ₄ ગેરહાજર
11.	1 g ક્ષારને 20 mL પાણીમાં દ્રાવ્ય કરી મૂળ દ્રાવણ બનાવ્યું.	પારદર્શક દ્રાવણ બન્યું.	પાણીમાં દ્રાવ્ય ક્ષાર હાજર
12.	ઉપરના ક્ષારના થોડા દ્રાવણમાં 2 mL મંદ HCl ઉમેર્યું.	સફેદ અવક્ષેપ ઉત્પન્ન થયા નહિ.	સમૂહ-I ગેરહાજર
13.	તબક્કા- 12 ના દ્રાવણના એક ભાગમાં $ m H_2S$ વાયુ પસાર કર્યો.	અવક્ષેપ ઉત્પન્ન થયા નહિ.	સમૂહ-II ગેરહાજર
14.	ક્ષાર સફેદ છે તેથી તેને સાંદ્ર HNO ₃ સાથે ગરમ કરવાની જરૂર નથી. તબક્કા-12 ના દ્રાવણમાં 0.2 g ઘન એમોનિયમ ક્લોરાઈડ ઉમેર્યા બાદ, વધુ પ્રમાણમાં એમોનિયમ હાઈડ્રૉકસાઈડનું દ્રાવણ ઉમેર્યુ.	કોઈ અવક્ષેપ ઉત્પન્ન થતા નથી.	સમૂહ-III ગેરહાજર
15.	ઉપરના દ્રાવણમાં $\mathrm{H_{2}S}$ વાયુ પસાર કર્યો.	કોઈ અવક્ષેપ ઉત્પન્ન થતા નથી.	સમૂહ-IV ગેરહાજર
16.	મૂળ દ્રાવણમાં વધુ પ્રમાણમાં એમોનિયમ હાઇડ્રૉકસાઈડ ઉમેર્યા બાદ તેમાં 0.5 g એમોનિયમ કાર્બોનેટ ઉમેર્યો.	અવક્ષેપ ઉત્પન્ન થતા નથી.	સમૂહ-V ગેરહાજર
17.	ક્ષારના મૂળ દ્રાવણમાં એમોનિયમ હાઇડ્રૉકસાઈડનું દ્રાવણ ઉમેરી તેમાં ડાયસોડિયમ હાઇડ્રૉજન ફોસ્ફેટનું દ્રાવણ ઉમેર્યુ, ગરમ કર્યુ અને કસનળીની અંદરની દીવાલોને ઘસી.	સફેદ અવક્ષેપ	Mg ²⁺ નિશ્ચિત હાજર

પરિણામ

આપેલા ક્ષારમાં નીચે દર્શાવેલા આયનો હાજર છે.

ઋણાયન : SO_4^{2-} ધનાયન : Mg^{2+}

પરિયોજનાઓ (Projects)

શોધ પરિયોજનાઓ અંગેની પૃષ્ઠભૂમકાિ

પ્રસ્તાવના (Introduction)

વૈજ્ઞાનિક જ્ઞાનનું વિસ્તરણ અને તેના પરિણામસ્વરૂપ શિક્ષણ પધ્ધતિમાં પરિવર્તનને કારણે શિક્ષણ પ્રવિધિઓમાં બદલાવ આવ્યો છે. હાલમાં શિક્ષણ માટેની જૂની વ્યાખ્યાન પધ્ધતિને બદલે પૂછપરછ અભિગમ અને ચર્ચા પધ્ધતિને વિશેષ મહત્ત્વ અપાઈ રહ્યું છે. ઉચ્ચતર માધ્યમિક સ્તરે વિજ્ઞાન શિક્ષણમાં પરિયોજના કાર્યને સમાવીને વિજ્ઞાન શિક્ષણને નવી દિશા આપવામાં આવી છે. પરિયોજના કાર્ય દ્વારા શિક્ષણ આપવું તે વ્યક્તિગત શિક્ષણ પધ્ધતિ છે. તે વિદ્યાર્થીને સમસ્યાને વ્યાખ્યાયિત કરવાની, તેના કાર્યનું આયોજન કરવાની, યોગ્ય સંશાધનો શોધવાની, તેના આયોજનને અમલમાં મૂકવાની અને તારણો કાઢવાની તક આપે છે. આ રીતે વિદ્યાર્થી પાયાના વૈજ્ઞાનિક સિધ્ધાંતો, પધ્ધતિઓ અને પ્રક્રિયાઓથી પરિચિત થાય છે અને વૈજ્ઞાનિક શોધમાં સમાયેલા વિવિધ તબક્કાઓનું પ્રત્યક્ષ જ્ઞાન મેળવે છે. આમ, પરિયોજના કાર્ય મદદરૂપ થાય છે : (a) વિજ્ઞાનમાં રસને વધારવામાં (b) વૈજ્ઞાનિક જિજ્ઞાસા ઉત્પન્ન કરવામાં (c) સ્વતંત્ર વિવેચાત્મક વિચાર ઉત્પન્ન કરવામાં (d) વિજ્ઞાનના ક્ષેત્રના વિવિધ સાધનો અને પ્રવિધિઓના ઉપયોગોના અનુભવ આપવામાં (e) આત્મવિશ્વાસ વિકસાવવામાં. આમ, વિજ્ઞાન શિક્ષણની આધુનિક પધ્ધતિમાં પરિયોજના કાર્યને વધુ પ્રોત્સાહન આપવામાં આવે છે.

કોઈપણ પ્રકારની શોધનું નિરૂપણ, આયોજન અને અમલીકરણ પુસ્તકાલયમાં, પ્રયોગશાળામાં, કાર્યક્ષેત્રમાં અથવા ઘરમાં થયું હોય, તો તે શોધ પરિયોજના છે. પરિયોજના એટલી સરળ હોઈ શકે છે કે જેમાં ખનીજોના નમૂના એકત્ર કરવાના હોય અને એટલી કઠિન પણ હોઈ શકે છે કે જેમાં કોઈ રસાયણના ઉત્પાદન માટે સ્થાનિક નવી જ પ્રક્રિયા શોધવામાં આવે. કેટલીક પરિયોજનાઓ સંપૂર્ણપણે સૈધ્ધાંતિક હોય છે અને તેમાં માત્ર પુસ્તકાલયને લગતું કાર્ય રહેલું હોય છે. અન્ય પરિયોજનાઓમાં પ્રાયોગિક કાર્ય રહેલું હોય છે, જે પ્રયોગશાળામાં કરવામાં આવે છે. વિજ્ઞાનમાં પ્રાયોગિક કાર્ય વિદ્યાર્થીઓને અનેક વૈજ્ઞાનિક ઉપકરણો, સાધનો, પ્રવિધિઓ અને બૌધ્ધિક કૌશલ્યનો પરિચય કરાવે છે.

પરિયોજનાની પસંદગી (Selection of Projects)

સામાન્ય રીતે પરિયોજનાની પસંદગી, વિદ્યાર્થીઓ દ્વારા થવી જોઈએ. પરિયોજનાનો વિચાર વર્ગખંડમાં વિષય શીખતી વખતે, વિવિધ પરિયોજનાના અહેવાલ વાંચતી વખતે, વિજ્ઞાન સમાચારમાંથી, વિજ્ઞાનના મેગેઝીનમાં રહેલાં વિજ્ઞાનના લેખમાંથી પ્રાપ્ત થાય છે. કેટલીક વખત વિજ્ઞાન પરિયોજનાનો વિચાર વર્ગખંડમાં ચર્ચાતા વિષય મુદ્દા પરથી આવી શકે છે, જેમાં પરીક્ષણ, માપન અને અર્થઘટન જરૂરી હોઈ શકે છે. પરિયોજના અંગેનો વિચાર મેળવવા માટે વિજ્ઞાનના કેટલાક મેગેઝીન છે: (a) જર્નલ ઑફ કેમિકલ

શોધ પરિયોજનાઓ અંગેની પૃષ્ઠભૂમિકા

એજયુકેશન (b) કેમિસ્ટ્રી એજયુકેશન (c) એજયુકેશન ઇન કેમિસ્ટ્રી (d) ન્યૂ સાયંટિસ્ટ (e) સ્કૂલ સાયન્સ (f) સ્કૂલ સાયન્સ રિવ્યુ (g) સાયન્સ (h) સાયંટિફિક અમેરિકન (i) સ્કૂલ સાયન્સ રિર્સોસ પત્ર, વગેરે. એકવાર પરિયોજના કાર્ય શરૂ થાય, તે બાદ નવા શીર્ષક અને વિચારો પ્રાપ્ત થઈ શકે છે.

જો ઉપરોક્ત વૈજ્ઞાનિક સાહિત્ય સહેલાઈથી પ્રાપ્ત હોય, તો પણ એ માની લેવું યોગ્ય નથી કે વિદ્યાર્થી સ્વયંભૂ પરિયોજના કાર્ય કરી શકશે. વૈજ્ઞાનિક મેગેઝીનોની ઉપરોક્ત યાદીમાંથી મોટાભાગના ભારતીય શાળાઓમાં ઉપલબ્ધ હોતા નથી. તેથી વિદ્યાર્થીઓને શિક્ષકોના માર્ગદર્શન અને મદદની જરૂર પડે છે. જો કેટલાક વિદ્યાર્થીઓને પરિયોજના માટે કોઈ વિચાર ન મળે, તો શિક્ષક તેઓને પરિયોજના અંગેના મુદ્દાઓની યાદી આપી શકે છે અથવા વિદ્યાર્થીઓને વિજ્ઞાન મેળામાં અથવા પ્રદર્શનમાં તે જોવા લઈ જઈ શકે છે કે બીજા વિદ્યાર્થીઓ શું કામ કરી રહ્યા છે. પરિયોજના અંતર્ગત કામ કરવાની રૂપરેખા નીચે દર્શાવી છે:

- 1. પરિયોજનાનું શીર્ષક
- 2. પરિયોજનાના હેતુઓ અને મહત્ત્વ
- 3. પરિયોજના અંગેના કાર્યની ટૂંકમાં રૂપરેખા

પરિયોજનાનું શીર્ષક તે પ્રમાણે લખવું જોઈએ કે જેથી પરિયોજનાના હેતુઓ અને મહત્ત્વ સ્પષ્ટ રીતે વ્યાખ્યાયિત થતા હોય. બીજા શબ્દોમાં કહીએ તો પરિયોજનાના શીર્ષક અને હેતુઓ રસ અને જિજ્ઞાસા ઉત્પન્ન કરવાવાળા હોવા જોઈએ. 'પરિયોજનાના કાર્ય-આયોજનનું સંક્ષિપ્ત વર્શન' વિદ્યાર્થીને કાર્ય શરૂ કરવામાં મદદરૂપ થાય છે.

આ વિવાદાસ્પદ હોઈ શકે છે કે પરિયોજના માટેના વિચારો અંગે સૂચનો આપવાથી પરિયોજનાનો મૂળ હેતુ મૌલિકતા સમાપ્ત થઈ જાય છે. પરંતુ દરેક વિદ્યાર્થીને કોઈ હેતુ સંદર્ભે પ્રથમ વખત કાર્યની શરૂઆત કરવા માટે માર્ગદર્શન આપવું તે સંપૂર્ણપણે વૈજ્ઞાનિક અને જરૂરિયાત છે.

સમયની વ્યવસ્થા (Managing Time)

ગુજરાત માધ્યમિક શિક્ષણ બોર્ડે પરિયોજના કાર્ય માટે દસ તાસનો (Periods) સમય ફાળવ્યો છે. વિદ્યાર્થી શૈક્ષણિક વર્ષની શરૂઆતમાં પરિયોજના કાર્ય શરૂ કરી શકે છે અને તેને તબક્કાવાર પૂર્ણ કરી વર્ષના અંતમાં તેના અહેવાલને રજૂ કરી શકે છે.

પ્રૌદ્યોગિક અને શૈક્ષણિક માર્ગદર્શન (Technical and Academic Guidance)

આ પ્રોજેકટ કાર્યને સરળતાથી કાર્યરત રાખવા માટેનું એક અગત્યનું પરિબળ છે. વિદ્યાર્થીએ પ્રોજેકટ કાર્યનું આયોજન અગાઉથી કરી લેવું જોઈએ અને તેની રૂપરેખા સંદર્ભે શિક્ષક સાથે ચર્ચા કરવી જોઈએ. જો પરિયોજન કાર્ય માટે જરૂરી સાધનો અથવા ઉપકરણો અથવા રસાયણો પ્રયોગશાળામાં પ્રાપ્ય ન હોય, તો તે માટે શિક્ષકની મદદ લઈ શકાય છે. જો પ્રૌદ્યોગિક અને શૈક્ષણિક માર્ગદર્શનની જરૂર હોય, તો માત્ર તમારા રસાયણવિજ્ઞાનના શિક્ષકની જ નહિ પણ ભૌતિકવિજ્ઞાન અને અન્ય વિજ્ઞાનના શિક્ષકોની પણ મદદ લઈ શકો છો.

પ્રયોગશાળાની સગવડો (Laboratory Facilities)

જયાં સુધી શક્ય હોય ત્યાં સુધી એવી પરિયોજનાને પસંદ કરવી જોઈએ કે જેના માટેની જરૂરી સામગ્રી (સાધનો, ઉપકરણો, રસાયણો વગેરે) સરળતાથી પ્રાપ્ય હોય. જો રસાયણો કે સાધનો (કામચલાઉ અથવા મૂળ) પ્રયોગશાળામાં પ્રાપ્ય ન હોય, તો વિદ્યાર્થી પરિયોજના કાર્ય માટે એટલો ઉત્સુક હોવો જોઈએ કે તેને ખરીદવાની ઈચ્છા રાખે અને જો તે ખરીદવા સક્ષમ હોય, તો તે ખરીદી શકે છે. વધુ ખર્ચાળ પરિયોજનાથી વિદ્યાર્થી હતોત્સાહી બને છે. અસરકારક પરિયોજના માટે ચોક્કસ વિષયકેન્દ્રી અભિગમ કરતાં એકીકૃત અભિગમ વધુ જરૂરી છે.

પરિયોજના કાર્ય માટે પ્રયોગશાળામાં મોટી અને અલગ જગ્યાની જરૂર હોય છે. એવી વ્યવસ્થા કરવી જોઈએ કે એક જ સમયે બધા વિદ્યાર્થીઓને પ્રયોગશાળામાં કાર્ય ન કરવું પડે. કેટલાક વિદ્યાર્થીઓએ પુસ્તકાલયમાંથી સંદર્ભ-પુસ્તકો મેળવવાનું કાર્ય કરવું જોઈએ તથા અન્ય વિદ્યાર્થીઓએ પ્રયોગની રૂપરેખા તૈયાર કરવી જોઈએ.

પ્રયોગશાળામાં ધાતુક્ષારણ, આથવણ વગેરે જેવા લાંબો સમય ચાલનારા પ્રયોગોને કરવામાં થોડી મુશ્કેલીઓ આવી શકે છે. આ માટે સૂચન છે કે પ્રયોગશાળામાં એક અલગ બેન્ચ (bench) હોવી જોઈએ, જ્યાં લાંબો સમય ચાલનારા પ્રયોગોને ગોઠવી શકાય. પરિયોજના કાર્ય સંબંધિત કેટલાક રસાયણોના નમૂનાઓ અને સાધનોને રાખવા માટે વિદ્યાર્થીઓના નામ લખેલા પૂંઠાના ખોખાનો ઉપયોગ કરી શકાય છે. જો ખાલી બોટલ પ્રાપ્ય હોય, તો તેનો પણ ઉપયોગ રસાયણોનો સંગ્રહ કરવા થાય છે.

પરિયોજના કાર્યની નોંધ (Recording the Project Work)

પરિયોજનામાં વાસ્તવિક અવલોકનોને નોંધવા અતિ આવશ્યક હોય છે. વિદ્યાર્થીઓને નકારાત્મક પરિશામો પશ નોંધવા પ્રોત્સાહિત કરવા જોઈએ. પરિયોજનાના અહેવાલને લખવા માટેનું એક સામાન્ય માળખું નીચે સૂચવ્યુ છે. તેમાં નીચે જણાવેલા મુદ્દાઓ હોવા જોઈએ.

- 1. હેતુઓને પ્રદર્શિત કરતું પરિયોજનાનું શીર્ષક
- 2. શોધ માટે ઉપયોગમાં લેવાયેલા સિધ્ધાંતો
- 3. જરૂરી સાધનો અને રસાયણો
- 4. જો કોઈ કામચલાઉ વ્યવસ્થા ઊભી કરી હોય, તો તે
- 5. પધ્ધતિ
- 6. અવલોકનો અને ગણતરીઓ
- 7. તારણો અને એવા તર્ક કે જે તારણોના આધાર હોય.
- 8. સાવચેતીઓ
- 9. બાદની શોધ માટે જો કોઈ સૂચનો હોય, તો તે

ઉપરોક્ત માળખાંને સ્પષ્ટ કરવા માટે પરિયોજનાના અહેવાલનો એક નમૂનો અંતમાં રજૂ કરવામાં આવ્યો છે. એ ધ્યાન રાખવું જોઈએ કે પરિયોજનાના અહેવાલનો

શોધ પરિયોજનાઓ અંગેની પૃષ્ઠભૂમિકા

નમૂનો વિદ્યાર્થીને તેની પરિયોજનાનો અહેવાલ લખવા સંદર્ભે માર્ગદર્શન માટે છે. તે સંપૂર્ણ નથી. તેમાં પણ ઘણા સુધારા થઈ શકે છે. કેટલીક પરિયોજનાઓનું સંક્ષિપ્ત વર્ણન નીચે દર્શાવ્યુ છે.

પરિયોજના 1

શીર્ષક

પાણીમાં સલ્ફાઈડ આયનની સાંદ્રતા તપાસી બેકટેરિયા દ્વારા થતા જલપ્રદૂષણનું પરીક્ષણ કરવું અને પ્રદૂષણના કારણો જાણવા

હેતુ

વિવિધ સ્રોતો દ્વારા એકત્રિત કરેલા પાણીના નમૂનાઓમાં સલ્ફાઈડ આયનની સાંદ્રતા નક્કી કરીને જીવાશુ પ્રદૂષણ તપાસવું.

પૃષ્ઠ ભૂમિકા

પાણીમાં જયારે અજારક જીવાણુઓ કાર્બનિક પદાર્થોનું વિઘટન કરે છે અથવા સલ્ફેટનું રિડકશન કરે છે, ત્યારે સલ્ફાઇડ આયન હાજર હોય છે. તે સ્થિર પાણીમાં જોવા મળે છે. સામાન્ય રીતે કાગળની મિલ, ગેસ ઉદ્યોગ, ચર્મ ઉદ્યોગ, સુએઝ સ્થળ અને અન્ય રાસાયણિક ઉદ્યોગો દ્વારા ઉત્પન્ન થતાં પ્રદૂષકો આ પ્રકારના જીવાણુઓની વૃદ્ધિ માટે જવાબદાર હોય છે.

સંક્ષિપ્ત પધ્ધતિ

નમૂનાઓનું એકત્રિકરણ

સલ્ફાઈડ તરત જ ઑક્સિડેશન પામે છે, તેથી નમૂનો લેતી વખતે કાળજી રાખીને નમૂનામાંથી હવાને નાઈટ્રોજન અથવા કાર્બન ડાયૉકસાઈડના પ્રવાહથી દૂર કરવી જોઈએ. પરંતુ ઉત્તમ રસ્તો તે છે કે નમૂનો લીધા બાદ તુરત જ તેને બંધ કરવો. આ કેડિમયમ-ઝિંક એસિટેટના દ્રાવણનું ઓછું કદ ઉમેરીને કરી શકાય છે. આ માટે 80 mL પાણી લો અને તેમાં 20 mL કેડિમયમ - ઝિંક એસિટેટનું દ્રાવણ ઉમેરી કુલ કદ 100 mL કરો. Cd-Zn એસિટેટનું દ્રાવણ બનાવવા માટે 1 લિટર પાણીમાં 50 g કેડિમયમ એસિટેટ અને 50 g ઝિંક એસિટેટને ઓગાળો. જો એકિંગ્રત કરેલા નમૂના સ્વભાવે ઍસિડિક હોય, તો તેઓને પહેલા થોડા વધુ આલ્કલી વડે તટસ્થ બનાવો.

બંધપાત્રમાં રાખેલા દ્રાવણનું અનુમાપન

અનુમાપન ફ્લાસ્કમાં બંધ પાત્રમાં રાખેલા દ્રાવશનું 100~mL કદ લો. તેમાં 20~mL 0.025~M આયોડિનનું દ્રાવશ ઉમેરી તરત જ 15~mL HCl (1:1) ઉમેરી મિશ્ર કરો. વધારાના આયોડિનનું 0.05M Na $_2\text{S}_2\text{O}_3$ વડે અંતિમબિંદુની નજીક સ્ટાર્ચને સૂચક તરીકે ઉમેરી અનુમાપન કરો. H_2S સાથેની પ્રક્રિયામાં વપરાયેલા આયોડિનના જથ્થાના આધારે મૂળ નમૂનામાં રહેલા સલ્ફાઈડ આયનના જથ્થાની ગશતરી કરો. જો નમૂનારહિત (blank) અનુમાપનનું મૂલ્ય પ્રાપ્ય હોય, તો તેને ગશતરી કરેલા મૂલ્યમાંથી બાદ કરવું.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

પરિયોજના 2

શીર્ષક

પાણીની શુધ્ધીકરણ પધ્ધતિઓનો અભ્યાસ

હેતુઓ

- શુધ્ધીકરણની વિવિધ પધ્ધતિઓનો અભ્યાસ કરવો.
- શુધ્ધીકરણ માટે ઉપયોગમાં લેવાતી વિવિધ પધ્ધતિઓના ફાયદા અને ગેરફાયદાનો અભ્યાસ કરવો.
- શુધ્ધ પાણીના વિશિષ્ટ ઉપયોગો અંગે જાણવું.

પૃષ્ઠ ભૂમિકા

જુદા જુદા કુદરતી સ્રોતોથી મળતી પાણીની શુધ્ધતા જુદી જુદી હોય છે. પ્રદૂષણ અને અશુધ્ધિઓનો આધાર પાણી કયા સ્રોતમાંથી મેળવવામાં આવ્યું છે તેના પર હોય છે. પીવાના ઉપયોગ ઉપરાંત આપણને શુધ્ધ પાણીની અન્ય જુદા જુદા ઉપયોગો માટે આવશ્યકતા રહે છે. દા.ત., રાસાયણિક પૃથક્કરણમાં. પાણીના શુધ્ધીકરણ માટે વિવિધ પધ્ધતિઓ ઉપયોગમાં લેવાય છે. તે અશુધ્ધિઓ અને પ્રદૂષણને જુદા જુદા સ્તરે દૂર કરે છે. આ પધ્ધતિઓના ઉપયોગના કેટલાક ફાયદા અને ગેરફાયદા રહેલા છે. શુધ્ધીકરણની વિવિધ પધ્ધતિઓની સરખામણી પરથી ચોક્કસ ઉપયોગ માટે ચોક્કસ શુધ્ધતાવાળા પાણી મેળવવાની જાણકારી મળશે.

સંક્ષિપ્ત પધ્ધતિ

વિદ્યાર્થીઓ પીવાના પાણીના શુધ્ધીકરણ માટેની ઉપયોગમાં લેવાતી વિવિધ પ્રવિધિઓને જાણી શકે છે. તેઓ ચોક્કસ શુધ્ધતાવાળા પાણીના ઉપયોગો જાણવા માટે સાહિત્યનું સર્વેક્ષણ તથા ઉદ્યોગોની મુલાકાત પણ કરી શકે છે. પરિયોજનાના વિવિધ પાસાંઓના અભ્યાસ માટે વિદ્યાર્થીઓ સમૃહમાં કાર્ય કરી શકે છે.

નોંધ: આ પરિયોજનાનો અન્ય હેતુ જુદા જુદા સ્રોતો જેવા કે નદી, કૂવા, બંધકૂવા (bore-well), નગરપાલિકા દ્વારા મેળવવામાં આવતા પાણીના શુધ્ધીકરણની વિવિધ પધ્ધતિઓનો અભ્યાસ કરવાનો છે.

પરિયોજના 3

શીર્ષક

જુદા જુદા વિસ્તારોમાંથી મેળવવામાં આવેલા પીવાના પાણીમાં કઠિનતા, આયર્ન, ફલોરાઈડ, કલોરાઈડ વગેરેની કસોટી કરવી અને આ આયનો માન્ય માત્રાથી વધુ પ્રમાણમાં હાજર હોય, તો તેની અસરોનો અભ્યાસ કરવો.

શોધ પરિયોજનાઓ અંગેની પૃષ્ઠભૂમિકા

હેતુઓ

- પાણીના જુદા જુદા નમૂનાઓમાં કુલ કઠિનતા, આયર્ન, ફ્લોરાઈડ અને ક્લોરાઈડ વગેરેની ક્સોટી કરવી.
- પાણીમાં ઉપરોક્ત આયનોના સ્થાનિક સ્રોતો અંગેની માહિતી એકત્ર કરવી.
- જો આ આયનોની માત્રા, માન્ય માત્રાથી (permissible limits) વધુ હોય તો તેની તંદુરસ્તી પર થતી અસરોનો અભ્યાસ કરો.
- આવી કોઈ સમસ્યા સ્થાનિક કે તેની આસપાસના વિસ્તારમાં હોય તો તે શોધવું.

પૃષ્ઠ ભૂમિકા

પીવાના પાણીની ગુણવત્તાનો સીધો સંબંધ મનુષ્યની તંદુરસ્તી અને જીવન સાથે છે. જો પાણીમાં રહેલા આયર્ન, ફ્લોરાઈડ, ક્લોરાઈડ વગેરે માન્ય માત્રાથી વધુ પ્રમાણમાં હોય, તો તેઓ તંદુરસ્તીને લગતી કેટલીક સમસ્યાઓ સર્જે છે. દા.ત., જો ફ્લોરાઈડનું પ્રમાણ માન્ય માત્રાથી વધુ હોય, તો તે વિસ્તારના લોકોને ફ્લોરોસીસ રોગ થઈ શકે છે. પાણીની કઠિનતા તેમાં રહેલા કેલ્શિયમ અને મેગ્નેશિયમ આયનોની હાજરીને કારણે હોય છે. આ ખૂબ જાણીતી હકીકત છે કે કઠિન પાણી ધોલાઈના હેતુ માટે યોગ્ય નથી. આમ, પાણીમાં હાજર આયનો અને તેની માત્રા જાણવી ખૂબ અગત્યની છે.

સંક્ષિપ્ત પધ્ધતિ

વિદ્યાર્થીઓ જુદા જુદા સ્રોતોથી પાણીના નમૂનાઓ એકત્રિત કરી શકશે. તેઓ તેમાં જુદા જુદા આયનોની હાજરી સામાન્ય પૃથક્કરણ પધ્ધતિઓ દ્વારા જાણી શકે છે. પાણીની કુલ કઠિનતાનું માપન સંકીર્ણમીતીય અનુમાપનની પ્રમાણિત પધ્ધતિ દ્વારા કરી શકાય છે. આ સ્તરે CI^-,F^- અને Fe^{2+} નું માપન મુશ્કેલ છે. તેથી અભ્યાસના હેતુ માટે માન્ય પ્રયોગશાળામાં રહેલી માહિતી લઈ શકાય છે.

પરિયોજના 4

શીર્ધક

કપડાં ધોવાના વિવિધ સાબુઓની ફીશ ઉત્પન્ન કરવાની ક્ષમતાની તપાસ અને તેઓની ફીશ ઉત્પન્ન કરવાની ક્ષમતા પર સોડિયમ કાર્બોનેટના ઉમેરાની અસર.

હેતુ

સાબુઓની ફીણ ઉત્પન્ન કરવાની ક્ષમતા અને તેઓની ફીણ ઉત્પન્ન કરવાની ક્ષમતા પર સોડિયમ કાર્બોનેટના ઉમેરાની અસરનો અભ્યાસ.

સંક્ષિપ્ત પધ્ધતિ

સાબુના નમૂનાનું 1 g વજન કરો અને તેને 100 mL નિસ્યંદિત પાણીમાં સંપૂર્ણપણે દ્રાવ્ય કરો. 10 mL સાબુના દ્રાવણને ઉત્કલન નળીમાં લો અને આ નળીનું મુખ બૂચ વડે બંધ કરો. આ દ્રાવણને 20 સમાન ઝટકા આપી હલાવો, જેથી ફીણ એકસમાન રીતે વધે. ઉત્કલન નળીમાં ફીણ જ્યાં સુધી પહોંચ્યો છે, ત્યાં સુધીની લંબાઈ માપો. બરાબર આ જ રીતે અન્ય સાબુના દ્રાવણ માટે પ્રયોગ કરો.

ઉપરના દરેક સાબુના દ્રાવશના 50 mL માં 5 g સોડિયમ કાર્બોનેટને અલગ - અલગ ઉમેરી દ્રાવ્ય કરો. હવે 10 mL દ્રાવશને ઉત્કલન નળીમાં લઈને સમાન વખત (દા.ત., 20 સમાન ઝટકા) હલાવો. જ્યાં સુધી ફીશ પહોંચેલો દેખાય ત્યાં સુધીની ઉત્કલન નળીની લંબાઈ માપો. આજ પ્રકારનો પ્રયોગ અન્ય સાબુના દ્રાવશો માટે કરો. અવલોકનોને કોષ્ટક સ્વરૂપે નોંધો.

સોડિયમ કાર્બોનેટ ઉર્મેયા બાદ અને તે અગાઉના વિવિધ સાબુના દ્રાવણોમાં કીણ ઉત્પન્ન થયાની ઊંચાઈની સરખામણી કરો અને તારણો કાઢો.

પરિયોજના 5

શીર્ષક

ચાના પર્શોના વિવિધ નમૂનાઓની ઍસિડિકતા અને આ પર્શોમાંથી બનેલી ચાના રંગમાં જોવા મળતા તફાવતના કારણોનો અભ્યાસ.

હેતુ

ચાના વિવિધ નમૂનાઓમાં રહેલા ઍસિડની સાંદ્રતાનું માપન કરવું અને ચાના નિષ્કર્ષના રંગ પર ઍસિડ અથવા બેઈઝના ઉમેરણની અસરનો અભ્યાસ કરવો.

સંક્ષિપ્ત પધ્ધતિ

(a) ચામાં રહેલા ઍસિડની સાંદ્રતાનું માપન

ચાના પર્શોના નમૂનાનું 10 g વજન કરો અને દરેક નમૂનાનું નિષ્કર્ષ અલગ-અલગ રીતે 200 mL નિસ્યંદિત પાણીમાં બનાવો. આ માટે ચાના પર્શોના વિવિધ નમૂનાઓને નિસ્યંદિત પાણી સાથે નિશ્ચિત સમય માટે ઉકાળો.

5 mL ચાના નિષ્કર્ષને કોનિકલ ફ્લાસ્કમાં લો અને તેને 20 mL નિસ્યંદિત પાણી વડે મંદ કરો. દ્રાવણને સમાંગ રીતે મિશ્રિત કરવા બરાબર હલાવો અને ફિનોલ્ફ્થેલીનનો સૂચક તરીકે ઉપયોગ કરી તેનું M/50 NaOH ના દ્રાવણ સાથે અનુમાપન કરો. બરાબર આ જ રીતે અન્ય ચાના નિષ્કર્ષોનું M/50 NaOH સાથે

શોધ પરિયોજનાઓ અંગેની પૃષ્ઠભૂમિકા

અનુમાપન કરો. ચાના પર્જ્ઞાના વિવિધ નમૂનાઓમાં રહેલા એસિડની સાંદ્રતાની ગણતરી મોલારિટીમાં કરો. જો ચાના નિષ્કર્ષનો રંગ મુશ્કેલી ઊભી કરતો હોય, તો ચાના નિષ્કર્ષને બ્યુરેટમાં લઈ શકાય અને સોડિયમ હાઇડ્રૉકસાઈડના દ્રાવણને કોનિકલ ફ્લાસ્કમાં લઈ શકાય. જો સોડિયમ હાઇડ્રૉકસાઈડને કોનિકલ ફ્લાસ્કમાં લેવામાં આવે, તો ફિનોલ્ફ્થેલીનને સૂચક તરીકે લઈ શકાશે. અહીં, રંગપરિવર્તન ગુલાબીમાંથી રંગવિહીન થશે.

(b) ચાના નિષ્કર્ષના રંગ પર ઍસિડ અને બેઈઝની અસર

ગાળણપત્રની પાંચ પટ્ટીઓ લો અને તેઓને A, B, C, D અને E વડે નામાંકિત કરો. કોઈ એક ચાના નમૂનાના નિષ્કર્ષમાં આ બધી પટ્ટીઓને ડુબાડીને બહાર કાઢો. પટ્ટીઓ A, B, C અને D પર અનુક્રમે મંદ HCl ના, એસિટિક ઍસિડનાં દ્રાવણના, NaOH ના દ્રાવણના અને NH₄OH ના દ્રાવણના બે ટીંપા મૂકો. આ પટ્ટીઓના રંગમાં થતા ફેરફારની સરખામણી પટ્ટી E ના રંગ સાથે કરો. અન્ય ચાના નમૂનાના નિષ્કર્ષ માટે આ પ્રયોગનું પુનરાવર્તન કરો.

પરિયોજના 6

શીર્ષક

વિવિધ પ્રવાહીઓના બાષ્પીભવનના દરનો અભ્યાસ

હેતુ

વિવિધ પ્રવાહીઓના બાષ્પીભવનના દર અને તેઓની રાસાયણિક સંરચના વચ્ચેના સંબંધનો અભ્યાસ

સંક્ષિપ્ત પધ્ધતિ

પાંચ સ્વચ્છ અને વજન માટેની શુષ્ક નળીઓ લો અને તેઓને A, B, C, D અને E વડે નામાંકિત કરો. દરેક વજનનળીનું તેનાં ઢાંકે સાથે વજન કરો. હવે જુદી જુદી વજનનળીઓમાં જુદા જુદા પ્રવાહીઓના (ઈથેનોલ, ઈથર, ટેટ્રાકલોરોમિથેન, એસિટોન વગેરે) 10 mL કદ લો. દરેક વજનનળીનું ફરીથી વજન કરી વજનનળીમાં લીધેલા પ્રવાહીનું દળ શોધો.

વજનનળીઓના ઢાંકણ દૂર કરી તેઓને એક કલાક માટે ઓરડાના તાપમાને રહેવા દો. બરાબર એક કલાક બાદ બધી વજનનળીઓના મોઢાં ઢાંકણ વડે બંધ કરી દો અને તેઓનું એક પછી એક વજન કરો.

દરેક પ્રવાહીના દળમાં થયેલો ઘટાડો ગણો. દરેક પ્રવાહીના બાષ્પીભવન માટે તાપમાન અને સપાટીનું ક્ષેત્રફળ સમાન હોવું જોઈએ. દરેક પ્રવાહીના બાષ્પીભવનનો દર ગ્રામ પ્રતિ સેકન્ડમાં માપો. પ્રવાહીઓના બાષ્પીભવનના દરમાં જોવા મળતાં તફાવતને તેઓની રાસાયણિક સંરચના અને આંતરઆણ્વીય / આંતઃઆણ્વીય આકર્ષણમાં રહેલા તફાવત સાથે સંબંધિત કરો.

પરિયોજના 7

શીર્ષક

રેસાઓની તનાવ ક્ષમતા પર ઍસિડ અને બેઈઝની અસરનો અભ્યાસ.

હેતુ

વિવિધ પ્રકારના રેસાઓની તનાવ ક્ષમતા પર ઍસિડની અસરનો અભ્યાસ.

સંક્ષિપ્ત પધ્ધતિ

રેસાની તનાવ ક્ષમતાનું માપન રેસાને તોડવા જરૂરી ન્યૂનતમ વજન દ્વારા થાય છે. તેને નીચે મુજબ કરી શકાય છે.

લગભગ 20 cm લાંબો એક દોરો લો. તેના એક છેડાને લોખંડના સ્ટેન્ડમાં સ્થિર રહેલી કડી સાથે બાંધો અને બીજા છેડાને વજન લટકાવવાના હુક સાથે જોડો. હુક પર વજન વધારતા જઈ દોરો તોડવા જરૂરી ન્યૂનતમ વજન શોધો. આ દોરા જેટલી લંબાઈ અને જાડાઈ ધરાવતા વિવિધ પ્રકારના પદાર્થોના (દા.ત., રૂ, ઊન, રેશમ, ટેરીલીન વગેરે) દોરા માટે આ પ્રયોગનું પુનરાવર્તન કરો. આ વજન રેસાઓની તનાવ ક્ષમતાનું માપ છે.

રેસાઓની તનાવ ક્ષમતા પર ઍસિડ અને બેઈઝની અસર, તેઓને અલગથી સમાન પ્રબળતાવાળા મંદ HCl ના દ્રાવણમાં અથવા મંદ NaOH નાં દ્રાવણમાં સમાન સમય માટે ડુબાડી રાખીને જાણી શકાય છે. થોડા પણ નિયત સમય બાદ રેસાઓને દ્રાવણમાંથી બહાર કાઢી, પાણી વડે ધોઈ શુષ્ક કરવામાં આવે છે. બાદમાં આ દોરાઓને તોડવા માટે જરૂરી ન્યૂનતમ વજનને માપવામાં આવે છે. આ વજનો ઍસિડ અને બેઈઝની પ્રક્રિયા કર્યા બાદ રેસાઓની તનાવ ક્ષમતાનું માપ છે. તમારા અવલોકનોનું અર્થઘટન પદાર્થના રેસાઓના રાસાયણિક સંઘટનના આધારે કરો.

પરિયોજના 8

શીર્ષક

શાકભાજી અને ફળોમાં રહેલા ઍસિડ અને ખનીજોનો અભ્યાસ

હેતુ

- (a) વિવિધ શાકભાજી અને ફળોમાં રહેલા ઍસિડના જથ્થાનું માપન કરવું.
- (b) શાકભાજી અને ફળોમાં આયર્ન, કાર્બોદિત, પ્રોટીન અને શર્કરા વગેરેની હાજરી જાણવી.

શોધ પરિયોજનાઓ અંગેની પૃષ્ઠભૂમિકા

સંક્ષિપ્ત પધ્ધતિ

(a) ઍસિડનો જથ્થો

કેટલાક ફળો અને શાકભાજીને (સફરજન, નારંગી, આમળા, લીંબુ, ગાજર, શેરડી વગેરે) દબાવીને તેમાંથી રસ એકઠો કરો. રસનાં નમૂનાઓને અલગ-અલગ પાત્રોમાં રાખો. વિવિધ રસના નમૂનાની pH માપો. તેઓમાં ઍસિડ જથ્થાનું માપન રસના જ્ઞાત જથ્થાનું M/100 પોટેશિયમ હાઇડ્રૉકસાઈડના દ્રાવણ વડે ફિનોલ્ફથેલીનને સૂચક તરીકે વાપરી અનુમાપન દ્વારા કરો. જો રસનો રંગ ઘેરો હોય તો તેને પુરતી માત્રામાં નિસ્યંદિત પાણી વડે મંદ કરો. જેથી અનુમાપન દરમિયાન અંતિમબિંદુ સ્પષ્ટ મળે.

રસના ઍસિડ મૂલ્યોની સરખામણી દ્વારા રસના ઍસિડ જથ્થાની સરખામણી કરો. 1 ગ્રામ ફળો અથવા શાકભાજીમાં હાજર ઍસિડને તટસ્થ કરવા જરૂરી પોટેશિયમ હાઇડ્રૉકસાઈડના મિલિગ્રામમાં જથ્થાને શાકભાજી અથવા ફળનું ઍસિડ મૂલ્ય કહે છે.

(b) આયર્ન, કાર્બોદિત (સ્ટાર્ચ અને શર્કરા), પ્રોટીન અને ચરબીની કસોટીઓ

શાકભાજી અને ફળોના રસમાં આયર્નની હાજરી જાણવા માટે તેઓને સાંદ્ર HNO₃ સાથે થોડો સમય ગરમ કરો. ત્યારબાદ આયર્નની કસોટી કરો. કાર્બોદિત (સ્ટાર્ચ, શર્કરા) પ્રોટીન અને ચરબીને સામાન્ય કસોટીઓ દ્વારા પારખી શકાય છે.

પરિયોજના અહેવાલનો નમૂનો

શીર્ષક

એક જ સમાનધર્મી શ્રેણીના કાર્બનિક સંયોજનોના (a) આણ્વીયદળ અને (b) કાર્બન શૃંખલાના બંધારણોમાં ફેરફાર સાથે તેઓની સ્નિગ્ધતામાં થતા ફેરફારનો અભ્યાસ.

પૃષ્ઠ ભૂમિકા

મધ અને મોબિલ તેલ જેવા કેટલાક પ્રવાહીઓ બહુ ધીમે વહન પામે છે જયારે પાણી અથવા કેરોસીન જેવા અન્ય પ્રવાહીઓ ઝડપી વહન પામે છે. જે પ્રવાહીઓ ધીરે વહન પામે છે તેને સ્નિગ્ધ પ્રવાહીઓ કહે છે, જયારે જે પ્રવાહીઓ ઝડપી વહન પામે છે તેને અસ્નિગ્ધ પ્રવાહીઓ કહે છે. કોઈ પ્રવાહીના વહનનાં અવરોધને સ્નિગ્ધતા કહે છે. તે પ્રવાહીમાં રહેલા આંતરઆણ્વીયબળો સાથે સંબંધિત છે. જુદા જુદા પ્રવાહીઓમાં આંતરઆણ્વીય બળની માત્રા જુદી જુદી હોવાથી તેઓની સ્નિગ્ધતાનું મૂલ્ય જુદુ જુદુ હોય છે. ચોક્કસ સમાનધર્મી શ્રેણીમાંના વિવિધ સમાનધર્મીઓ અને સમઘટકોની સ્નિગ્ધતાની સરખામણી તેઓમાં રહેલા આંતરઆણ્વીય બળોની માત્રાનો ખ્યાલ આપે છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

હેતુઓ

આ પરિયોજનાનો હેતુ કાર્બનિક સંયોજનોમાં (a) સ્નિગ્ધતા અને આણ્વીય દળ (b) સ્નિગ્ધતા અને કાર્બન શૃંખલા પ્રકૃતિ વચ્ચે સંબંધ પ્રસ્થાપિત કરવાનો છે.

સમાયેલો સિધ્ધાંત

જોખમ અંગેની ચેતવણી

- આલ્કોહૉલ અને એસિટોનની બોટલ ઉપયોગમાં ન હોય ત્યારે ખુલ્લી રાખવી નહિ કારણ કે તેઓ જ્વલનશીલ છે.
- બોટલને જયોતથી દૂર રાખો.
- પ્રયોગ પછી તમારા હાથ ધુઓ.
- સુરક્ષા ચશ્મા પહેરો.

પ્રવાહીના વહનના અવરોધને સ્નિગ્ધતા ગુણાંક સ્વરૂપે માપવામાં આવે છે જેને નીચે મુજબ વ્યાખ્યાયિત કરવામાં આવે છે. નિયત તાપમાને કોઈ પ્રવાહીના સ્નિગ્ધતા ગુણાંક એવું સ્થિર બળ હોય છે, જે એકમ અંતરે રહેલા પ્રવાહીના બે સમાંતર સ્તરો જે એકમ સંપર્ક ક્ષેત્રફળ ધરાવે છે, તેમની વચ્ચેના વેગનો તફાવત એકમ રાખવા જરૂરી હોય છે.

સ્નિગ્ધતા ગુજ્ઞાંક ઑસ્વાલ્ડ સ્નિગ્ધતા માપક દ્વારા માપી શકાય છે. જો બે પ્રવાહીઓના સ્નિગ્ધતા ગુજ્ઞાંક η_1 , η_2 ; વહનનો સમય સેકન્ડમાં t_1 , t_2 તથા ઘનતા d_1 , d_2 હોય, તો તેમની વચ્ચે નીચે દર્શાવ્યા મુજબનો સંબંધ જોવા મળે છે.

$$\frac{\eta_1}{\eta_2} = \frac{d_1 \times t_1}{d_2 \times t_2}$$

જો એક પ્રવાહીની સ્નિગ્ધતા જાણતા હોઈએ, તો અન્ય બીજા પ્રવાહીની સ્નિગ્ધતા જાણી શકાય છે.

જરૂરી સામગ્રી

ઑસ્વાલ્ડ સ્નિગ્ધતામાપક (વિસ્કોમીટર), સ્ટૉપ વૉચ, બીકર (250 mL), પિપેટ, અંકિત નળાકાર, કેરોસીન, પેટ્રોલ, ડીઝલ, મિથાઈલ આલ્કોહૉલ, ઈથાઈલ આલ્કોહૉલ, પ્રોપાઈલ આલ્કોહૉલ, આઈસો પ્રોપાઈલ આલ્કોહૉલ, બ્યુટાઈલ આલ્કોહૉલ, આઈસો બ્યુટાઈલ આલ્કોહૉલ, વૃત્તીયક બ્યુટાઈલ આલ્કોહૉલ અને એમાઈલ આલ્કોહૉલ.

સંક્ષિપ્ત પધ્ધતિ

સ્નિગ્ધતામાપકને ધોયું, આલ્કોહોલથી વીછળ્યું અને શુષ્ક કર્યું. જે પ્રવાહીનું માપન કરવાનું હતું તે પ્રવાહીના 10 mL સ્નિગ્ધતામાપકમાં ભરવામાં આવ્યું. સ્નિગ્ધતામાપકમાં અંકિત કરેલી બે નિશાની વચ્ચે પ્રવાહીના વહનનો સમય સ્ટૉપ-વૉચની મદદથી નોંધ્યો. આ અવલોકનોને કોષ્ટક I અને II માં નોંધ્યા. સમાયેલો સિધ્ધાંત મથાળા હેઠળ ચર્ચા કરવામાં આવેલા સૂત્રની મદદથી વિવિધ પ્રવાહીઓની સ્નિગ્ધતાની ગણતરી કરવામાં આવી.

અવલોકનો અને ગણતરીઓ

ઓરડાનું તાપમાન = 23 °C

આલ્કોહૉલ માટે વિવિધ ક્ષમતાવાળા સ્નિગ્ધતામાપકનો ઉપયોગ કરવામાં આવ્યો હતો.

શોધ પરિયોજનાઓ અંગેની પૃષ્ઠભૂમિકા

કોષ્ટક 1 : વિવિધ સંયોજનોના વહનના સમયની માહિતી

ક્રમ	સંયોજનનું નામ	વહનનો સમય (સેકન્ડ)	ઘનતા (g / mL)	સ્નિગ્ધતા (મિલિપોઈસ)
1.	પાણી	13.5	1	10.08
2.	પેટ્રોલ	8.5	0.8	6.4
3.	કેરોસીન	22.0	1	16.4
4.	ડિઝલ	48.0	1	18.0

કોષ્ટક 2 : વિવિધ સંયોજનોની સ્નિગ્ધતા વિરૂદ્ધ આષ્વીયદળનાં સંબંધની માહિતી

ક્રમ	સંયોજનનું નામ	આણ્વીય દળ	વહનનો સમય (સેકન્ડ)	ઘનતા (g / mL)	સ્નિગ્ધતા (મિલિપોઈસ)
1.	પાણી	18	180	1	10.08
2.	મિથેનોલ	32	136	0.79	7.6
3.	ઈથેનોલ	46	258	0.78	14.4
4.	પ્રોપેન-1-ઑલ	60	391	0.8	21.9
5.	પ્રોપેન-2-ઑલ	60	546	0.79	30.6
6.	બ્યુટેન-1-ઑલ	74	612	0.81	34.3
7.	બ્યુટેન-2-ઑલ	74	686	0.80	38.4
8.	2-મિથાઈલ પ્રોપેન-1-ઑલ	74	1406	0.79	78.8
9.	પેન્ટેન-1-ઑલ	88	784	0.817	43.9

નોંધ: * જો આલ્કોહૉલના સમાનધર્મીઓ / સમઘટકો પ્રાપ્ય ન હોય તો, અન્ય અનુકૂળ સંયોજનનો જે પ્રાપ્ય હોય અથવા જેની સહેલાઈથી વ્યવસ્થા કરી શકાય તેમ હોય તેનો આ અભ્યાસમાં ઉપયોગ કરી શકાય છે.

તારણ

કોષ્ટક 1 પરથી કહી શકાય કે વિવિધ હાઇડ્રૉકાર્બન ઘટકો એટલે કે પેટ્રોલ, કેરોસીન અને ડીઝલની સરેરાશ સ્નિગ્ધતા અુકમે 6.4, 16.4 અને 18.0 છે. આ ઘટકોનું આણ્વીયદળ પેટ્રોલથી ડિઝલ તરફ વધે છે, જે સૂચવે છે કે સ્નિગ્ધતા આણ્વીયદળ વધવાની સાથે વધે છે. આણ્વીયદળ વધે તેમ આંતરઆણ્વીય આકર્ષણબળ પણ વધે છે.

^{**} કોષ્કમાં નોંધાયેલો વહનનો સમય સ્નિગ્ધતા માપક પર આધારિત હોય છે, તેથી તેને પ્રમાણિત મૂલ્યો તરીકે ન ગણવા જોઈએ.

આલ્કોહૉલ સંયોજનોના કિસ્સામાં, નવ આલ્કોહૉલ સંયોજનોની સ્નિગ્ધતાનું માપન કરવામાં આવ્યું અને તેમના મૂલ્યોને કોષ્ટક 2 માં દર્શાવવામાં આવ્યા છે. મિથેનોલ, ઈથેનોલ, પ્રોપેન-1-ઑલ, બ્યુટેન-1-ઑલની સ્નિગ્ધતા અનુક્રમે 7.6, 14.4, 21.9 અને 34.3 મિલિપોઈસ છે. જે દર્શાવે છે કે આલ્કોહૉલ સંયોજનોની સ્નિગ્ધતા તેઓના આણ્વીયદળ વધવાની સાથે વધે છે. આમ, પરિણામો દર્શાવે છે કે સ્નિગ્ધતા આણ્વીયદળ વધવાની સાથે વધે છે.

0000000

સાવચેતી

સ્નિગ્ધતામાપકનો ઉપયોગ કરતા અગાઉ તેને યોગ્ય રીતે સાફ કરી, શુષ્ક કરી લેવું જોઈએ.

બાદની શોધ માટે સૂચનો

યોગ્ય સંયોજનોનો ઉપયોગ કરી આંતરઆણ્વીય બળ સાથે સ્નિગ્ધતામાં થતા ફેરફારનો અભ્યાસ કરી શકાય.

સંદર્ભ પુસ્તક

KEENA, C.W.: WOOD, J.H. General Chemistry IVth Edition., Harper and Row Publishers Inc. New York.

પરિશિષ્ટ

પરિશિષ્ટ I

પ્રયોગશાળામાં પ્રક્રિયકોની ગોઠવણી

પ્રયોગશાળા સહાયકે જોવું જ જોઈએ, કે દરેક છાજલી (shelf) પર રહેલી પ્રક્રિયક બોટલો વ્યવસ્થિત ગોઠવાયેલી છે ? તેઓને નામાંકિત કરેલી છે ? તેમાં તાજા બનાવેલા પ્રક્રિયકો પૂરતાં જથ્થામાં છે ?

સોડિયમ હાઇડ્રૉજન ફોસ્ફેટ

સોડિયમ નાઇટ્રોપ્રસાઇડ

સ્ટેનસ કલોરાઈડ

સ્ટાર્ચનું દ્રાવશ

સાર્વત્રિક સૂચક

35.

36.

37.

દરેક છાજલી પર રાખવાના થતા પ્રક્રિયકો

પ્રક્રિયકને સ	યાં.કડા.	મખવાળી	ઢાંકણા	સહિતની	બોટલમાં	રાખવા
7113 LJ L C		3 1-11-11	QC2 200	CCCCCC CC		CC C-CC

1.	એમોનિયમ કાર્બોનેટ	5.	ચૂનાનું પાણી
2.	એમોનિયમ હાઇડ્રૉકસાઈડ	6.	નાઇટ્રિકઍસિડ (મંદ)
3.	હાઇડ્રૉકલોરિક ઍસિડ (મંદ)	7.	સલ્ફયુરિક ઍસિડ (મંદ)
4.	હાઇડ્રૉકલોરિક ઍસિડ (સાંદ્ર)	8.	સલ્ફયુરિક ઍસિડ (સાંદ્ર)

સામાન્ય છાજલી પર રાખવાના થતાં પ્રક્રિયકો

પશ્ચિકને માંકરા મુખવાળી ઢાંકણા મહિતની બોટલમાં રાખવા

(A)	પ્રાક્રયકન સાકડા મુખવાળા ઢાકણા સાહતના બાટલમા રાખવા		
1.	એસિટિક ઍસિડ (ગ્લેસિઅલ)	19.	લેડ એસિટેટ
2.	એસિટિક ઍસિડ (મંદ)	20.	મેગ્નેશિયમ સલ્ફેટ
3.	આલ્કલાઈન -β નેપ્યોલ	21.	મરક્યુરિક કલોરાઇડ
4.	એમોન્તિયમ મોલિબ્ડેટ	22.	મિથાઈલ ઓરેન્જ
5.	એમોનિયમ ઑકઝેલેટ	23.	નેસ્લરનો પ્રક્રિયક
6.	એમોનિયમ સલ્ફેટ	24.	ફિનોલ્ફથેલીન
7.	એમોનિયમ સલ્ફેટ (પીળો)	25.	પોટેશિયમ ક્રોમેટ
8.	બેરિયમ કલોરાઇડ	26.	પોટેશિયમ ડાયક્રોમેટ
9.	બ્રોમિન જળ	27.	પોટેશિયમ ફેરિસાયનાઈડ
10.	કેલ્શિયમ કલોરાઇડ	28.	પોટેશિયમ ફેરોસાયનાઈડ
11.	કેલ્શિયમ સલ્ફેટ	29.	પોટેશિયમ આયોડાઈડ
12.	કાર્બન ડાયસલ્ફાઈડ	30.	પોટેશિયમ પરમેંગેનેટ
13.	કલોરિન જળ	31.	પરિશોધિત સ્પિરિટ
14.	કૉબાલ્ટ નાઇટ્રેટ	32.	સિલ્વર નાઇટ્રેટ

પ્રક્રિયકોને પહોળા મુખવાળી બોટલમાં સામાન્ય છાજલી પર રાખવા

(B)

15. કૉપર સલ્ફેટ

17. ફેરિક કલોરાઈડ

ફેરસ સલ્ફેટ

ડાયમિથાઈલ ગ્લાયોકઝાઈમ

(a)	ઘન		
1.	એમોનિયમ કલોરાઈડ	8.	પોટેશિયમ ડાયક્રોમેટ
2.	બોરેકસ	9.	સોડિયમ કાર્બોનેટ
3.	ફેરસ સલ્ફેટ	10.	સોડિયમ હાઇડ્રૉજન કાર્બોનેટ
4.	ગલન મિશ્રણ	11.	સોડિયમ હાઇડ્રૉકસાઈડ
5.	મેંગેનીઝ ડાયૉકસાઈડ	12.	સોડિયમ નાઈટ્રેટ
6.	ઑકઝેલિક ઍસિડ	13.	સોડિયમ નાઇટ્રોપ્રુસાઈડ
7.	પોટેશિયમ ક્રોમેટ	14.	સોડિયમ પૅરૉસાઈડ
(b)	ધાતુઓ		
1.	કૉપર	3.	દાશાદાર ઝિંક
2.	ટિન	4.	ઝિંક પાઉડર
(c)	чя		
1.	લૅડ એસિટેટ પત્ર	5.	સ્ટાર્ચ આયોડાઈડ પત્ર
2.	લિટમસ પત્ર (વાદળી)	6.	સ્ટાર્ચ પત્ર
3.	લિટમસ પત્ર (લાલ)	7.	હળદર પત્ર
4.	પોટેશિયમ ડાયક્રોમેટ પત્ર	8.	સાર્વત્રિક સૂચક પત્ર
4.	પોટેશિયમ ડાયક્રોમેટ પત્ર	8.	સાર્વત્રિક સૂચક પત્ર

129

પરિશિષ્ટ II

રસાયણવિજ્ઞાન પ્રયોગશાળા માટેના રસાયણો અને સાધનોની યાદી

1. ફટકડી (પોટાશ) 2. એલ્યુમિનિયમ કલોરાઇડ 3. એલ્યુમિનિયમ સલ્કેટ 4. એમોનિયમ એસિટેટ 5. એમોનિયમ એસિટેટ 6. એમોનિયમ સેરિક નાઇટ્રેટ 7. એમોનિયમ મોલિલ્ડેટ 8. એમોનિયમ મોલિલ્ડેટ 9. એમોનિયમ નાઇટ્રેટ 10. એમોનિયમ નાઇટ્રેટ 11. એમોનિયમ સલ્કેટ 12. એમોનિયમ સલ્કેટ 13. એમોનિયમ સલ્કેટ 14. આર્સેનિયમ સાયોસાયનેટ 14. આર્સેનિયમ આંકએસાઇડ 15. બેરિયમ કલોરાઇડ 16. બેરિયમ નાઇટ્રેટ 17. બિસ્મથ નાઇટ્રેટ 18. બોરિક ઍસિડ 19. બ્રોમિન (પ્રવાહી) 20. કેડમિયમ કલોરાઇડ 21. કેડમિયમ કલોરાઇડ 22. કેડમિયમ કાર્બોનેટ 21. કેડસિયમ કાર્બોનેટ 23. કેલ્શિયમ હાઇડ્રૉકસાઇડ 24. કેલ્શિયમ હાઇડ્રૉકસાઇડ 25. કેલ્શિયમ હાઇડ્રૉકસાઇડ 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ 27. કેલ્શિયમ નાઇટ્રેટ 31. કોપર કાર્બોનેટ 32. કેલ્શિયમ નાઇટ્રેટ 33. કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ 34. કેલ્રાયમ નાઇટ્રેટ 35. કેલ્શ્યમ નાઇટ્રેટ 36. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ 37. કેલ્રાયમ નાઇટ્રેટ 38. કેલ્યમ નાઇટ્રેટ 39. કેલ્રાયમ નાઇટ્રેટ 31. કોપર કાર્બોનેટ 32. કોપર સલ્ફેટ 33. કોપર નાઇટ્રેટ	\(\frac{18^*}{2}\). \(\frac{1}{2}\). \(\frac{1}\). \(\frac{1}\). \(\frac{1}{2}\). \(\frac{1}{2}\). \(1
2. એલ્યુમિનિયમ કલોરાઇડ 3. એલ્યુમિનિયમ સલ્કેટ 4. એમોનિયમ સર્લિકેટ 5. એમોનિયમ કર્લોનેટ 6. એમોનિયમ કર્લોરાઇડ 8. એમોનિયમ કર્લોરાઇડ 8. એમોનિયમ મોલિલ્ડેટ 9. એમોનિયમ નાઇટ્રેટ 10. એમોનિયમ આક્રેલેટ 11. એમોનિયમ શાંકેટ 11. એમોનિયમ શાંકેટ 12. એમોનિયમ શાંધોસાયનેટ 13. એમોનિયમ શાંધોસાયનેટ 14. આર્સીનિયસ ઓક્સાઇડ 15. બેરિયમ કલોરાઇડ 16. બેરિયમ નાઇટ્રેટ 17. બિસ્મથ નાઇટ્રેટ 18. બોરિક એસિડ 19. બ્રોમિન (પ્રવાહી) 20. કેડમિયમ કલોરાઇડ 21. કેડમિયમ કલોરાઇડ 22. કેડમિયમ નાઇટ્રેટ 23. કેલ્શિયમ કલોરાઇડ 24. કેલ્શિયમ હાઇડ્રૉકસાઈડ 25. કેલ્શિયમ હાઇડ્રૉકસાઈડ 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉકસાઈડ 27. કેલ્શિયમ નાઇટ્રેટ 31. કોપર કાર્બોનેટ 32. કોપર સલ્ફેટ 33. કોપર કાર્બોનેટ 34. કેય્રિયમ નાઇટ્રેટ 35. કેપ્રિયમ નાઇટ્રેટ 36. નિર્જળ કેલ્શિયમ હાઇડ્રૉકસાઈડ 37. કેલ્શિયમ નાઇટ્રેટ 38. કેલ્શિયમ નાઇટ્રેટ 39. કોપર સલ્ફેટ 31. કોપર કાર્બોનેટ 31. કોપર કાર્બોનેટ 32. કોપર સલ્ફેટ 33. કોપર નાઇટ્રેટ	.RRRRRRRRRR.
8. એમોનિયમ મોલિલ્ડેટ L 9. એમોનિયમ નાઇટ્રેટ L 10. એમોનિયમ આંકઝેલેટ L 11. એમોનિયમ ફોસ્ફેટ L 12. એમોનિયમ શક્કેટ L 13. એમોનિયમ થાયોસાયનેટ L 14. આર્સીનિયસ ઓંકસાઇડ L 15. બેરિયમ કલોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ કલોરાઇડ L 21. કેડમિયમ કલોરાઇડ L 22. કેડમિયમ કલોરાઇડ L 23. કેલ્શિયમ કલોરાઇડ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ હાઇટ્રેઇ L 26. નિર્જળ કેલ્શિયમ હાઇટ્રોજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કેલાર નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપર કાર્બોનેટ L 34. કેલ્શિયમ આંકસાઇડ L 35. કેલ્શિયમ આંકસાઇડ L 36. નિર્જળ કેલ્શિયમ આંકસાઇડ L 37. કેલ્શિયમ નાઇટ્રેટ L 38. કેલ્સિયમ નાઇટ્રેટ L 39. કલોરન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપર નાઇટ્રેટ L	.R. .R. .R. .R. .R. .R. .R. .R. .R. .R.
8. એમોનિયમ મોલિબ્ડેટ L 9. એમોનિયમ નાઇટ્રેટ L 10. એમોનિયમ નાઇટ્રેટ L 11. એમોનિયમ કોસ્કેટ L 12. એમોનિયમ કોસ્કેટ L 13. એમોનિયમ થાયોસાયનેટ L 14. આર્સીનિયસ ઓક્સાઇડ L 15. બેરિયમ કલોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક એસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ કલોરાઇડ L 21. કેડમિયમ કલોરાઇડ L 22. કેડમિયમ કલોરાઇડ L 23. કેલ્શિયમ કલોરાઇડ L 24. કેલ્શિયમ કલોરાઇડ L 25. કેલ્શિયમ કલોરાઇડ L 25. કેલ્શિયમ કલોરાઇડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્કેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ આંકસાઇડ L 29. કલોરિન જળ L 30. કેાબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર કાર્બોનેટ L 33. કોપર કાર્બોનેટ L 34. કેલ્શિયમ આંકસાઇડ L 35. ક્લારિન જળ L 36. કોપર કાર્બોનેટ L 37. કેલ્શિયમ આંકસાઇડ L 38. કોપર કાર્બોનેટ L 39. કલોરિન જળ L 31. કોપર કાર્બોનેટ L 31. કોપર કાર્બોનેટ L 32. કોપર મલ્ફેટ L 33. કોપર કાર્બોનેટ L 34. કસ્ફ્રીડિક એસિટેટ L	.R. .R. .R. .R. .R. .R. .R. .R. .R. .R.
8. એમોનિયમ મોલિબ્ડેટ L 9. એમોનિયમ નાઇટ્રેટ L 10. એમોનિયમ નાઇટ્રેટ L 11. એમોનિયમ કોસ્કેટ L 12. એમોનિયમ કોસ્કેટ L 13. એમોનિયમ થાયોસાયનેટ L 14. આર્સીનિયસ ઓક્સાઇડ L 15. બેરિયમ કલોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક એસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ કલોરાઇડ L 21. કેડમિયમ કલોરાઇડ L 22. કેડમિયમ કલોરાઇડ L 23. કેલ્શિયમ કલોરાઇડ L 24. કેલ્શિયમ કલોરાઇડ L 25. કેલ્શિયમ કલોરાઇડ L 25. કેલ્શિયમ કલોરાઇડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્કેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ આંકસાઇડ L 29. કલોરિન જળ L 30. કેાબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર કાર્બોનેટ L 33. કોપર કાર્બોનેટ L 34. કેલ્શિયમ આંકસાઇડ L 35. ક્લારિન જળ L 36. કોપર કાર્બોનેટ L 37. કેલ્શિયમ આંકસાઇડ L 38. કોપર કાર્બોનેટ L 39. કલોરિન જળ L 31. કોપર કાર્બોનેટ L 31. કોપર કાર્બોનેટ L 32. કોપર મલ્ફેટ L 33. કોપર કાર્બોનેટ L 34. કસ્ફ્રીડિક એસિટેટ L	.R. .R. .R. .R. .R. .R. .R. .R. .R. .R.
8. એમોનિયમ મોલિલ્ડેટ L 9. એમોનિયમ નાઇટ્રેટ L 10. એમોનિયમ આંકઝેલેટ L 11. એમોનિયમ ફોસ્ફેટ L 12. એમોનિયમ શક્કેટ L 13. એમોનિયમ થાયોસાયનેટ L 14. આર્સીનિયસ ઓંકસાઇડ L 15. બેરિયમ કલોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ કલોરાઇડ L 21. કેડમિયમ કલોરાઇડ L 22. કેડમિયમ કલોરાઇડ L 23. કેલ્શિયમ કલોરાઇડ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ હાઇટ્રેઇ L 26. નિર્જળ કેલ્શિયમ હાઇટ્રોજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કેલાર નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપર કાર્બોનેટ L 34. કેલ્શિયમ આંકસાઇડ L 35. કેલ્શિયમ આંકસાઇડ L 36. નિર્જળ કેલ્શિયમ આંકસાઇડ L 37. કેલ્શિયમ નાઇટ્રેટ L 38. કેલ્સિયમ નાઇટ્રેટ L 39. કલોરન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપર નાઇટ્રેટ L	.R. .R. .R. .R. .R. .R. .R. .R. .R. .R.
8. એમોનિયમ મોલિબ્ડેટ L 9. એમોનિયમ નાઇટ્રેટ L 10. એમોનિયમ નાઇટ્રેટ L 11. એમોનિયમ કોસ્કેટ L 12. એમોનિયમ કોસ્કેટ L 13. એમોનિયમ થાયોસાયનેટ L 14. આર્સીનિયસ ઓક્સાઇડ L 15. બેરિયમ કલોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક એસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ કલોરાઇડ L 21. કેડમિયમ કલોરાઇડ L 22. કેડમિયમ કલોરાઇડ L 23. કેલ્શિયમ કલોરાઇડ L 24. કેલ્શિયમ કલોરાઇડ L 25. કેલ્શિયમ કલોરાઇડ L 25. કેલ્શિયમ કલોરાઇડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્કેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ આંકસાઇડ L 29. કલોરિન જળ L 30. કેાબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર કાર્બોનેટ L 33. કોપર કાર્બોનેટ L 34. કેલ્શિયમ આંકસાઇડ L 35. ક્લારિન જળ L 36. કોપર કાર્બોનેટ L 37. કેલ્શિયમ આંકસાઇડ L 38. કોપર કાર્બોનેટ L 39. કલોરિન જળ L 31. કોપર કાર્બોનેટ L 31. કોપર કાર્બોનેટ L 32. કોપર મલ્ફેટ L 33. કોપર કાર્બોનેટ L 34. કસ્ફ્રીડિક એસિટેટ L	.R. .R. .R. .R. .R. .R. .R. .R. .R. .R.
8. એમોનિયમ મોલિલ્ડેટ L 9. એમોનિયમ નાઇટ્રેટ L 10. એમોનિયમ આંકઝેલેટ L 11. એમોનિયમ ફોસ્ફેટ L 12. એમોનિયમ શક્કેટ L 13. એમોનિયમ થાયોસાયનેટ L 14. આર્સીનિયસ ઓંકસાઇડ L 15. બેરિયમ કલોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ કલોરાઇડ L 21. કેડમિયમ કલોરાઇડ L 22. કેડમિયમ કલોરાઇડ L 23. કેલ્શિયમ કલોરાઇડ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ હાઇટ્રેઇ L 26. નિર્જળ કેલ્શિયમ હાઇટ્રોજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કેલાર નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપર કાર્બોનેટ L 34. કેલ્શિયમ આંકસાઇડ L 35. કેલ્શિયમ આંકસાઇડ L 36. નિર્જળ કેલ્શિયમ આંકસાઇડ L 37. કેલ્શિયમ નાઇટ્રેટ L 38. કેલ્સિયમ નાઇટ્રેટ L 39. કલોરન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપર નાઇટ્રેટ L	.R. .R. .R. .R. .R. .R. .R. .R. .R. .R.
14. આર્સેનિયસ ઑકસાઇડ L 15. બેરિયમ ક્લોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ ક્લોરાઈડ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કલોરાઈડ L 24. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ કલોરાઈડ L 27. કેલ્શિયમ કલોરાઈડ L 28. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L 33. કોપર સલ્ફેટ L 34. કેય્રિયમ હાઇટ્રૉક L 35. કેય્રિશ્યમ હાઇટ્રૉક L 36. નિર્જળ કેલ્શિયમ હાઇટ્રૉક L 37. કેય્ર્રિયમ નાઇટ્રેટ L 38. કેય્ર્રિયમ નાઇટ્રેટ L 39. કલોરિન જળ L 30. કોબાસ્ટ ક્યાર્પેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L	R. R. R. R. R. R.
14. આર્સેનિયસ ઑકસાઇડ L 15. બેરિયમ ક્લોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ ક્લોરાઈડ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કલોરાઈડ L 24. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ કલોરાઈડ L 27. કેલ્શિયમ કલોરાઈડ L 28. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L 33. કોપર સલ્ફેટ L 34. કેય્રિયમ હાઇટ્રૉક L 35. કેય્રિશ્યમ હાઇટ્રૉક L 36. નિર્જળ કેલ્શિયમ હાઇટ્રૉક L 37. કેય્ર્રિયમ નાઇટ્રેટ L 38. કેય્ર્રિયમ નાઇટ્રેટ L 39. કલોરિન જળ L 30. કોબાસ્ટ ક્યાર્પેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L	R. R. R. R. R. R.
14. આર્સેનિયસ ઑકસાઇડ L 15. બેરિયમ ક્લોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ ક્લોરાઈડ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કલોરાઈડ L 24. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ કલોરાઈડ L 27. કેલ્શિયમ કલોરાઈડ L 28. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L 33. કોપર સલ્ફેટ L 34. કેય્રિયમ હાઇટ્રૉક L 35. કેય્રિશ્યમ હાઇટ્રૉક L 36. નિર્જળ કેલ્શિયમ હાઇટ્રૉક L 37. કેય્ર્રિયમ નાઇટ્રેટ L 38. કેય્ર્રિયમ નાઇટ્રેટ L 39. કલોરિન જળ L 30. કોબાસ્ટ ક્યાર્પેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L	R. R. R. R. R. R.
14. આર્સેનિયસ ઑકસાઇડ L 15. બેરિયમ ક્લોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ ક્લોરાઈડ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કલોરાઈડ L 24. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ કલોરાઈડ L 27. કેલ્શિયમ કલોરાઈડ L 28. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L 33. કોપર સલ્ફેટ L 34. કેય્રિયમ હાઇટ્રૉક L 35. કેય્રિશ્યમ હાઇટ્રૉક L 36. નિર્જળ કેલ્શિયમ હાઇટ્રૉક L 37. કેય્ર્રિયમ નાઇટ્રેટ L 38. કેય્ર્રિયમ નાઇટ્રેટ L 39. કલોરિન જળ L 30. કોબાસ્ટ ક્યાર્પેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L	R. R. R. R. R. R.
14. આર્સેનિયસ ઑકસાઇડ L 15. બેરિયમ ક્લોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ ક્લોરાઈડ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કલોરાઈડ L 24. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ કલોરાઈડ L 27. કેલ્શિયમ કલોરાઈડ L 28. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L 33. કોપર સલ્ફેટ L 34. કેય્રિયમ હાઇટ્રૉક L 35. કેય્રિશ્યમ હાઇટ્રૉક L 36. નિર્જળ કેલ્શિયમ હાઇટ્રૉક L 37. કેય્ર્રિયમ નાઇટ્રેટ L 38. કેય્ર્રિયમ નાઇટ્રેટ L 39. કલોરિન જળ L 30. કોબાસ્ટ ક્યાર્પેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L	R. R. R. R. R. R.
14. આર્સેનિયસ ઑકસાઇડ L 15. બેરિયમ ક્લોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ કાર્બોનેટ L 21. કેડમિયમ કાર્બોનેટ L 22. કેડમિયમ કાર્બોનેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ કાર્બોનેટ L 27. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 27. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 28. કેલ્શિયમ નાઇટ્રેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ ઑકસાઇડ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર સલ્ફેટ L 32. કોપર સલ્ફેટ L 33. કોપર સાલ્ફેટ L 34. કયુપ્રિક એસિટેટ L 35. ક્યુપ્રિક એસિટેટ L	R. R. R. R. R. R.
15. બેરિયમ ક્લોરાઇડ L 16. બેરિયમ નાઇટ્રેટ L 17. બિસ્મથ નાઇટ્રેટ L 18. બોરિક ઍસિડ L 19. બ્રોમિન (પ્રવાહી) L 20. કેડમિયમ કાર્બોનેટ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ કાર્બોરેટ L 27. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 27. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 28. કેલ્શિયમ નાઇટ્રેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પદ્રીઓ - 34. કયુપ્રિક એસિટેટ L 35. ક્યુપ્રિક એસિટેટ L	R. R. R. R. R.
20. કડામયમ કાબાનટ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પદ્યીઓ - 34. કયુપ્રિક એસિટેટ L	A.R. A.R. A.R. A.R. A.R.
20. કડામયમ કાબાનટ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પદ્યીઓ - 34. કયુપ્રિક એસિટેટ L	R. R. R. R.
20. કડામયમ કાબાનટ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પદ્યીઓ - 34. કયુપ્રિક એસિટેટ L	R. R. R.
20. કડામયમ કાબાનટ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પદ્યીઓ - 34. કયુપ્રિક એસિટેટ L	R. R.
20. કડામયમ કાબાનટ L 21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કોબાસ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પદ્યીઓ - 34. કયુપ્રિક એસિટેટ L	.J.,
21. કેડમિયમ કલોરાઈડ L 22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ કલોરાઈડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉકસાઈડ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપર સાર્બેન્ટ L 34. કયુપ્રિક એસિટેટ L	D
22. કેડમિયમ નાઇટ્રેટ L 23. કેલ્શિયમ કાર્બોનેટ L 24. કેલ્શિયમ કાર્બોનેટ L 25. કેલ્શિયમ કલોરાઈડ L 25. કેલ્શિયમ હાઇડ્રૉકસાઈડ L 26. નિર્જળ કેલ્શિયમ હાઇડ્રૉજનફોસ્ફેટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ નાઇટ્રેટ L 29. કલોરિન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપર માતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L	.R.
26. નિજળ કોલ્શયમ હાઇડ્રોજનફાસ્કટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ આકસાઇડ L 29. કલોરિન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L 35. ક્યુપ્રિક એસિટેટ L	.R.
26. નિજળ કોલ્શયમ હાઇડ્રોજનફાસ્કટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ આકસાઇડ L 29. કલોરિન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L 35. ક્યુપ્રિક એસિટેટ L	лK. D
26. નિજળ કોલ્શયમ હાઇડ્રોજનફાસ્કટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ આકસાઇડ L 29. કલોરિન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L 35. ક્યુપ્રિક એસિટેટ L	л.К.
26. નિજળ કોલ્શયમ હાઇડ્રોજનફાસ્કટ L 27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ આકસાઇડ L 29. કલોરિન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L 35. ક્યુપ્રિક એસિટેટ L	.K.
27. કેલ્શિયમ નાઇટ્રેટ L 28. કેલ્શિયમ આકસાઇડ L 29. કલોરિન જળ L 30. કોબાલ્ટ નાઇટ્રેટ L 31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L	۸K.
31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L	.R.
31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L	.K.
31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L	.K.
31. કોપર કાર્બોનેટ L 32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L	.K.
32. કોપર સલ્ફેટ L 33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L 35. ક્યાપ્રિક સાઇટેટ I	.K.
33. કોપરની પાતળી વળાંકવાળી પટ્ટીઓ - 34. કયુપ્રિક એસિટેટ L	.R.
34. કયુપ્રિક એસિટેટ L	.R.
[35 ຊາເທີ ຂຸ ສາເທີ ລ້ວ	
35. ક્યુપ્રિક નાઇટ્રેટ L 36. ડાયસોડિયમ ટેટ્રાબોરેટ L 37 કેઉલ્સાસ્ત્રિયમ (કરતી)	٨R.
36. ડાયસોડિયમ ટેટ્રાબોરેટ L	.R.
137 k[akana (eakh) 1	٦.R.
21. 2145 etd. (20201)	٦.R.
38. ફેરિક કલોરાઇડ L	٦.R.
39. ફેરસ એમોનિયમ સલ્ફેટ L	R. R. R. R.
40. ફરસ સલ્ફટ	ıK.
41. ફેરસ સલ્ફાઈડ L	.R.
	.R.
	٠R.
	٦.R.
45. લોખંડનો ભૂકો L	.R.
46. લેડ એસિટેટ L	٦.R.
	٦.R.
	.R.
	D
50. લિટમસ દ્રાવણ -	٦.R.
	.R.
	R. R.
	R. R. R.
	R. R. R. R.
56. મેંગેનીઝ ડાયૉકસાઇડ L	R. R. R. R. R.
57. મેંગેનીઝ સલ્ફેટ L	R. R. R. R. R. R.
58. આરસપહાણના ટુકડા L	R. R. R. R. R. R. R.

ક્રમ	અકાર્બનિક રસાયણો	ગ્રેડ*
59.	મરકયુરિક કલોરાઇડ	L.R.
60.	મિથાઈલ ઓરેન્જ	A.R.
61.	મિથાઈલ રેડ	A.R.
62.	નિકલ(II) નાઇટ્રેટ	L.R.
63.	નાઇટ્રિક ઍસિડ (સાંદ્ર)	L.R.
64.	pH પેપર અને ચાર્ટ	-
65.	પોટાશ એલમ (ફટકડી)	L.R.
66.	પોટેશિયમ બ્રોમાઈડ	L.R.
67.	પોટેશિયમ ક્રોમેટ	L.R.
68.	પોટેશિયમ ડાયક્રોમેટ	L.R.
69.	પોટેશિયમ ફેરિસાયનાઈડ	L.R.
70.	પોટેશિયમ ફેરોસાયનાઈડ	L.R.
71.	પોટેશિયમ હાઇડ્રૉકસાઈડ	L.R.
72.	પોટેશિયમ આયોડેટ	L.R.
73.	પોટેશિયમ આયોડાઈડ	L.R.
74.	પોટેશિયમ નાઇટ્રેટ	L.R.
75.	પોટેશિયમ નાઈટ્રાઈટ	L.R.
76.	પોટેશિયમ પરમેંગેનેટ	L.R.
77.	પોટેશિયમ સલ્ફેટ	L.R.
78.	પોટેશિયમ થાયોસાયનેટ	L.R.
79.	સ્કીફનો પ્રક્રિયક (અથવા ફ્રિય્સિન)	L.R.
80.	સિલ્વર નાઇટ્રેટ	L.R.
81.	સોડિયમ ઍસિટેટ	L.R.
82.	સોડિયમ બ્રોમાઈડ	L.R.
83.	સોડિયમ કાર્બોનેટ	L.R.
84.	સોડિયમ ક્લોરાઈડ	L.R.
85.	સોડિયમ ડાયહાઈડ્રૉજન ઓર્થોફોસ્ફેટ	L.R.
86.	સોડિયમ ડાયહાઈડ્રૉજન ફોસ્ફેટ	L.R.
87.	સોડિયમ હાઇડ્રૉજન કાર્બોનેટ	L.R.
88.	સોડિયમ હાઇડ્રૉકસાઈડ (પતરી સ્વરૂપે)	L.R.
89.	સોડિયમ મેટાબાયસલ્ફાઈટ	L.R.
90.	સોડિયમ ધાતુ	L.R.
91.	સોડિયમ નાઇટ્રેટ	L.R.
92.	સોડિયમ નાઇટ્રાઈટ	L.R.
93.	સોડિયમ નાઇટ્રોપ્રુસાઈડ	L.R.
94.	સોડિયમ ઑક્ઝેલેટ	L.R.
95.	સાડિયમ પોરૉકસાઈડ સોડિયમ પેરૉકસાઈડ	L.R.
95. 96.	સાડિયમ પોટેશિયમ ટાર્ટે રેટ (રોચેલનો ક્ષાર)	L.R. L.R.
90.	સાડિયમ યાટારાયમ ટાટ સ્ટ (રાયલમાં જ્ઞાર <i>)</i> સોડિયમ સલ્ફેટ	L.R. L.R.
98.		
	સોડિયમ ટાર્ટરેટ	L.R.
99.	સોડિયમ થાયોસલ્ ફે ટ	L.R.
	સ્ટેનસ કલોરાઈડ	L.R.
	સ્ટાર્ચ (દ્રાવ્ય)	L.R.
	સલ્ફાનિલિક ઍસિડ	L.R.
103.		L.R.
104.	સલ્ફયુરિક ઍસિડ (વ્યાપારિક)	L.R.
105.		- I D
106.		L.R.
	યુરેનાઇલ ઝિંક એસિટેટ ડિંડ રોડિક	L.R.
	ઝિંક એસિટેટ ડિંડ અર્ડ ડેડ	L.R.
	ઝિંક કાર્બોનેટ દિલ્લાએસ્ટિ	L.R.
	ઝિંક કલોરાઈડ	L.R.
	ઝિંક ધાતુ (દાણાદાર)	- I D
112.	ઝિંક ઑકસાઈડ સ્ટિંક સ્ટેક્ટ્રે	L.R.
1113.	ઝિંક સલ્ કે ટ	L.R.

^{*}L.R. = લેબોરેટરી પ્રક્રિયક (Laboratory reagent) Á.R. = વૈશ્લેષિક પ્રક્રિયક (Analytical reagent)

પરિશિષ્ટ II

ક્રમ	કાર્બનિક રસાયણો	ગ્રેડ*
1.	એસિટાલ્ડિહાઈડ	L.R.
2.	એસિટાનીલાઈડ	L.R.
3.	એસિટિક ઍસિડ (ઈથેનોઈક ઍસિડ)	L.R.
4.	એસિટિક એનહાઇડ્રાઈડ	L.R.
5.	એસિટોન	L.R.
6.	એસિટાઈલ કલોરાઈડ	L.R.
7.	એમાઈલ આલ્કોહૉલ	L.R.
8.	એનીલીન	L.R.
9.	બેનેડિકટનો પ્રક્રિયક	L.R.
10.	બેન્ઝિન	L.R.
11.	બેન્ઝોઈક ઍસિડ	L.R.
12.	બેન્ઝાઈલ આલ્કોહૉલ	L.R.
13.	બેન્ઝાલ્ડિહાઈડ	L.R.
14.	બ્યુટેનોલ	L.R.
15.	કાર્બન ડાયસલ્ફાઈડ	L.R.
16.	કાર્બન ટેટ્રાકલોરાઈડ	L.R.
17.	દિવેલ (એરંડિયુ)	L.R.
18.	કલોરોફોર્મ	L.R.
19.	સાઇટ્રિક ઍસિડ	L.R.
20.	કોન્ગો રેડ (પ્રત્યક્ષ એઝો રંગક)	L.R.
21.	ડાયએઝોએમિનો બેન્ઝિન	L.R.
22.	p-ડાયકલોરોબેન્ઝિન	L.R.
23.	ડાયઈથાઈલ ઈથર	L.R.
24.	ડાયમિથાઈલ ગ્લાયોકઝાઈમ	L.R.
25.	2,4-ડાયનાઈટ્રો ફિનાઈલ હાઈડ્રેઝીન	L.R.
26.	ડાયફિનાઈલ એમાઈન	L.R.
27.	ઈરિયોક્રોમ બ્લેક-ટી	A.R.
28.	ઈથાઈલ એસિટેટ	L.R.
29.	ઈથાઈલ આલ્કોહૉલ	L.R.
30.	ઈથાઈલ એમાઈન	L.R.
31.	ઈથીલીન ડાયએમાઈન ટેટ્રાએસિટિક ઍસિડ ડાયસોડિયમ સો	ાલ્ટA.R.
32.	ફ્રેહલિંગ દ્રાવણો (A અને B)	L.R.
33.	ફોર્માલ્ડિહાઈડ	L.R.

	-	
ક્રમ	કાર્બનિક રસાયણો	ગ્રેડ*
34.	ફોર્મિક એસિડ	L.R.
35.	ફુકટોઝ	L.R.
36.	ગ્લુકોઝ	L.R.
37.	િલસરોલ	L.R.
	લેકટોઝ	L.R.
	અળસીનું તેલ	L.R.
	પ્રવાહી પેરાફીન	L.R.
41.	મેલેચાઈટ ગ્રીન (બેઝિક રંગક)	L.R.
	માલ્ટોઝ	L.R.
	યંત્ર તેલ	L.R.
	મિથાઈલ આલ્કોહૉલ	L.R.
45.	મિથાઈલ ઓરેન્જ (ઍસિડિક રંગક)	L.R.
46.	સરસવનું તેલ	L.R.
47.	નેપ્યેલીન	L.R.
48.	1-નેપ્થાઈલએમાઈન	L.R.
	1-નેપ્થોલ	L.R.
50.	2-નેપ્થોલ	L.R.
51.	નીનહાઈડ્રીન	L.R.
	ઑક્ઝેલિક ઍસિડ	L.R.
	પેટ્રોલિયમ ઈથર (60º - 80º)	L.R.
	ફિનોલ	L.R.
55.	ફિનોલ્ફ્થેલીન	L.R.
56.	ફ્રિનાઈલ હાઇડ્રેઝીન હાઈડ્રોકલોરાઈડ	L.R.
57.	પ્થેલિક ઍસિડ	L.R.
58.	^	L.R.
	પીરીડીન	L.R.
60.		L.R.
	રિસોર્સિનોલ	L.R.
62.	સેલિસિલિક ઍસિડ	L.R.
63.	સકસિનિક ઍસિડ	L.R.
64.	સુક્રોઝ	L.R.
65.	થાયોયુરિયા	L.R.
66.	p-ટોલ્યુડિન	L.R.
67.	યુરિયા	L.R.

ક્રમ	કાચની વસ્તુઓ (બોરોસિલિકેટ કાચ)
1.	બીકર (50 mL)
2.	બીકર (100 mL)
3.	બીકર (150 mL)
4.	બીકર (250 mL)
5.	બીકર (500 mL)
6.	ઉત્કલન નળીઓ
7.	બ્યુરેટ (50 mL)
8.	કોનિકલ ફ્લાસ્ક (100 mL) .
9.	કોનિકલ ફ્લાસ્ક (150 mL)
10.	કોનિકલ ફ્લાસ્ક (250 mL)
11.	સપાટ તળિયાવાળો ફ્લાસ્ક (1 લિટર)
12.	ગળણી (8 cm વ્યાસ)
13.	કાચનું ડ્રૉપર
14.	કિપનું સાધન (વ્યાસ 1000 mm)
15.	જેલ્ડાહ્લનો ફ્લાસ્ક
16.	લિબિગનું શીતક

ક્રમ	કાચની વસ્તુઓ (બોરોસિલિકેટ કાચ)
17.	અંકિત નળાકાર (10 mL)
18.	અંકિત નળાકાર (50 mL)
19.	અંકિત નળાકાર (100 mL)
20.	અંકિત ફ્લાસ્ક (100 mL)
21.	અંકિત ફ્લાસ્ક (250 mL)
22.	પેટ્રી ડીશ (8 cm વ્યાસ)
23.	પિપેટ (10 mL)
24.	પિપેટ (25 mL)
25.	ગોળ તળિયાવાળો ફ્લાસ્ક (500 mL)
26.	ગોળ તળિયાવાળો ફ્લાસ્ક (1 લિટર)
27.	ભિન્નકારી ગળણી (250 mL)
28.	કસત્તળી (15 mL)
29.	થીલેની નળી
30.	વૉચ ગ્લાસ (9 cm વ્યાસ)
31.	જળ ચૂષક વજન કરવાની બોટલ

ક્રમ વસ્તુની વિગત

- 1. અગર અગર
- 2. એમીટર (0-1 amp)
- 3. બીહાઈવ શેલ્ફ
- 4. ફૂંકણી
- 5. વાદળી કાચ
- 6. બુન્સેન બર્નર
- 7. બ્યુરેટ બ્રશ
- 8. બ્યુરેટ સ્ટેન્ડ (લાકડાનું)
- 9. કેલરીમીટર
- 10. કેશનળી (કેશાકર્ષણ નળી)
- 11. કોલસાનો ચોસલો
- 12. રાસાયણિક તુલા
- 13. ક્લેમ્પ
- 14. જોડાણના તાર
- 15. કોપર પ્લેટ
- 16. બૂચ
- 17. બૂચને કાશા પાડવાનો સેટ
- 18. બૂચ ખોલવાનું સાધન
- 19. સૂકોકોષ (1.5 વૉલ્ટ)
- 20. ગાળણપત્રની શીટ (વૉટમેન અને સામાન્ય)
- 21. વિભાગી વજન
- 22. ગળણીનું સ્ટેન્ડ
- 23. વાયુપાત્ર ઢાંકણ સાથે
- 24. કાચનો સળિયો
- 25. કાચની નળી
- 26. કાચનું રૂ
- 27. ગ્લેઝડટાઈલ (સફેદ)
- 28. દહનનળી
- 29. લોખંડનું સ્ટેન્ડ
- 30. ચાકી (એકમાગી)

ક્રમ વસ્તુની વિગત

- 31. ખલ અને દસ્તો
- 32. ચીપિયો
- 33. પ્લેટિનમ તાર
- 34. પોલીથીનની વૉશ બોટલ (500 mL)
- 35. પોર્સેલીન ડીશ
- 36. પ્રક્રિયક શીશી (બોટલ) (150 mL)
- 37. પ્રક્રિયક શીશી (બોટલ) (250 mL)
- 38. પ્રક્રિયક શીશી (બોટલ) (500 mL)
- 39. પ્રક્રિયક શીશી (બોટલ) (2500 mL)
- 40. વલય (રિંગ) ક્લેમ્પ
- 41. ૨બ૨ના બૂચ (બધા જ માપના)
- 42. રબરની નળી
- 43. ਵੈਰ ਪੋਸ਼ (sand paper)
- 44. રેત ઉષ્મક
- 45. ચમચો (પ્લાસ્ટિક)
- 46. સ્પિરિટ
- 47. સ્પિરિટ દીવો (લેમ્પ)
- 48. સ્ટૉપ વૉચ
- 49. કસનળી બ્રશ
- 50. કસનળી હોલ્ડર
- 51. કસનળી સ્ટેન્ડ (પ્લાસ્ટિક)
- 52. થર્મોમીટર સામાન્ય (100 °C અને 360 °C)
- 53. થર્મોમીટર (0-110 °C અને 1/10 કાપાવાળુ)
- 54. થીસલ ગળણી
- 55. ત્રિકોણીય કાનસ
- 56. ત્રિપાઈ સ્ટેન્ડ (લોખંડનું)
- 57. છીછરું પાત્ર
- 58. વૉશ બોટલ
- 59. જળ ઉષ્મક
- 60. જળ નિસ્યંદન પ્લાન્ટ
- 61. મીણ (પેરાફ્રીન)
- 62. વજનપેટી (રાસાયણિક તુલા માટે)
- 63. તારની જાળી (મધ્યમાં એસ્બેસટોસવાળી)
- 64. વુલ્ફ બોટલ
- 65. ઝિંક પ્લેટ

પરિશિષ્ટ III

સામાન્ય પ્રયોગશાળા પ્રક્રિયકોની બનાવટ

I. સાંદ્ર ઍસિડ સંયોજનો

	નામ	અંદાજિત સાંદ્રતા	વિશિષ્ટ ઘનતા	અંદાજિત જથ્થો	વજનથી ટકા
1.	એસિટિક ઍસિડ (ગ્લેસિઅલ)	17.6 M (17.6 N)	1.06	1.06 g/mL	99.5%
2.	સાંદ્ર હાઇડ્રૉકલોરિક ઍસિડ	11.7 M (11.7 N)	1.19	$0.426\mathrm{g/mL}$	36.0%
3.	સાંદ્ર નાઇટ્રિક ઍસિડ	15.6 M (15.6 N)	1.42	$0.998\mathrm{g/mL}$	69.5%
4.	સાંદ્ર સલ્ફયુરિક ઍસિડ	18 M (36.0 N)	1.84	1.76 g/mL	98.0%

નોંધ : સાંદ્ર ઍસિડ સંયોજનોને બજારમાંથી જે સ્વરૂપે પ્રાપ્ત થયાં હોય તે જ સ્વરૂપે વાપરવામાં આવે છે.

II. મંદ ઍસિડ સંયોજનો

	નામ	સાંદ્રતા	બનાવટની રીત
1.	મંદ એસિટિક ઍસિડ	5 M (5 N)	285 mL ગ્લેસિઅલ એસિટિક ઍસિડને નિસ્યંદિત પાણી વડે મંદ કરો અને તેનું કુલ કદ 1 લિટર કરો.
2.	મંદ હાઇડ્રૉકલોરિક ઍસિડ	5 M (5 N)	નિસ્યંદિત પાણીમાં 430 mL સાંદ્ર HCl ઉમેરો અને દ્રાવણનું ફુલ કદ 1 લિટર કરો.
3.	મંદ નાઇટ્રિક ઍસિડ	5 M (5 N)	નિસ્યંદિત પાશીમાં 320 mL સાંદ્ર નાઈટ્રિક ઍસિડ ઉમેરો અને દ્રાવશનું કુલ કદ 1 લિટર કરો.
4.	મંદ સલ્ફયુરિક ઍસિડ	2.5 M (5 N)	500 mL નિસ્યંદિત પાણીમાં 140 mL સાંદ્ર સલ્ફયુરિક એસિડને ધીમે ધીમે ઉમેરો અને સતત હલાવતા રહો. દ્રાવણને ઠંડુ પાડો અને કુલ કદ 1 લિટર કરો.

III. બેઈઝ સંયોજનો

	નામ	સાંદ્રતા	બનાવટની રીત
1.	એમોનિયા દ્રાવણ (લિકર એમોનિયા)	15 M (15 N)	– બજારમાંથી પ્રાપ્ત થયા હોય તે સ્વરૂપે
2.	મંદ એમોનિયા દ્રાવણ (એમોનિયમ હાઇડ્રૉકસાઈડ)	2 M (2 N)	નિસ્યંદિત પાણીમાં 266.6 mL સાંદ્ર એમોનિયાના દ્રાવણને ઉમેરો અને દ્રાવણનું કુલ કદ 1 લિટર કરો.
3.	સોડિયમ હાઇડ્રૉકસાઈડ	5 M (5 N)	200 g સોડિયમ હાઇડ્રૉકસાઈડની ગોળીઓને (pellets) નિસ્યંદિત પાણીમાં ઓગાળીને દ્રાવણનું કુલ કદ 1 લિટર કરો.

IV. અન્ય પ્રક્રિયકો

	નામ	સાંદ્રતા	મોલર દળ	બનાવટની રીત
1.	એમોનિયમ એસિટેટ	2 M (2 N)	77	
2.	એમોનિયમ કલોરાઈડ	5 M (5 N)	53.5	267.5 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને તેને 1 લિટર સુધી મંદ કરો.
3.	એમોનિયમ કાર્બોનેટ	1.7 M (3.5 N)	96	160 g એમોનિયમ કાર્બોનેટને 140 mL લીકર એમોનિયામાં ઓગાળો અને નિસ્યંદિત પાણી વડે દ્રાવણનું કુલ કદ 1 લિટર બનાવો.

133

у	યોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન			
4.	એમોનિયમ મોલિબ્ડેટ			100 ગ્રામ ક્ષારને 100 mL લિકર એમોનિયાના દ્રાવણ અને 250 g એમોનિયમ નાઈટ્રેટના મિશ્રણમાં ઓગાળો અને દ્રાવણને 1 લિટર સુધી નિસ્યંદિત પાણી વડે મંદ કરો.
5.	એમોનિયમ ઑકઝેલેટ	0.5 M (1 N)	142	71 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને તેને 1 લિટર સુધી મંદ કરો.
6.	એમોનિયમ સલ્ફેટ	1 M (2 N)	132	132 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને તેને 1 લિટર સુધી મંદ કરો.
7.	બેરિયમ કલોરાઈડ BaCl,.2H,O	0.5 M (0.5 N)	244	61 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને તેને 1 લિટર સુધી મંદ કરો.
8.	બ્રોમિન જળ	અંદાજે સંતૃપ્ત	160	ુ 2 mL બ્રોમિનને 100 mL નિસ્યંદિત પાણીમાં ઉમેરો અને મિશ્રણને ખૂબ હલાવો. તેને ઘેરા રંગની બોટલમાં રાખો.
9.	કેલ્શિયમ કલોરાઈડ	0.5 M (0.5 N)	219	55 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને તેનું કદ 1 લિટર કરો.
10.	કલોરિન જળ	-	71	ઘન KMnO₄ ની સાંદ્ર HCl સાથે પ્રક્રિયા કરી કલોરિન વાયુ બનાવો. કલોરિન વાયુ વડે 1 લિટર નિસ્યંદિત પાણીને સંતૃપ્ત કરો અને આ દ્રાવણને ઘેરા રંગની બોટલમાં રાખો.
11.	કોપર સલ્ફેટ	14 %	249.5	14 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને તેનું કદ 100 mL કરો.
12.	કોબાલ્ટ નાઈટ્રેટ	0.15 M (0.075 N)	291	43.65 g ક્ષારને નિસ્યંદિત પાષ્ટ્રીમાં ઓગાળો અને તેનુ કુલ કદ 1 લિટર કરો.
13.	ડાયમિથાઈલ ગ્લાયોકઝાઈમ	1%		1 g પદાર્થને 100 mL ઈથાઈલ આલ્કોહૉલમાં ઓગાળો.
14.	ડાયફિનાઈલએમાઈન	0.5 %		0.5 g પદાર્થને 85 mL સાંદ્ર સલ્ફયુરિક ઍસિડમાં ઓગાળો અને તેને કાળજીપૂર્વક નિસ્યંદિત પાણી વડે 100 mL સુધી મંદ કરો.
15.	ડાયસોડિયમ હાઈડ્રૉજન ફોસ્ફેટ Na¸HPO₄.12H¸O	0.3 M (N)	358	120 g પદાર્થને નિસ્યંદિત પાણીમાં ઓગાળો અને તેનું કદ 1 લિટર કરો.
16.	ફેરિક કલોરાઈડ	0.33 M (1 N)	270	$90~\mathrm{g}$ ક્ષારને $10~\mathrm{mL}$ સાંદ્ર હાઈડ્રૉકલોરિક ઍસિડ ધરાવતા
	FeCl ₃ .6H ₂ O			પાણીમાં ઓગાળો અને દ્રાવણનું કદ 1 લિટર કરો.
17.	આયોડિન દ્રાવશ		254	1.0 g આયોડિનના સ્ફટિકોને 2 g પોટેશિયમ આયોડાઈડને પાણીના ઓછામાં ઓછા જથ્થામાં દ્રાવ્ય કરીને બનાવેલા દ્રાવણમાં દ્રાવ્ય કરો અને દ્રાવણને 100 mL સુધી મંદ કરો.
18.	લેડ એસિટેટ (CH₃COO)₂Pb	0.5 M (N)		15 mL એસિટિક ઍસિડ ધરાવતા 500 mL નિસ્યંદિત પાણીમાં 200 g પદાર્થને દ્રાવ્ય કરો અને નિસ્યંદિત પાણી વડે દ્રાવણનું કુલ કદ 1 લિટર કરો.
19.	ચૂનાનું પાણી Ca(OH),	0.02 M (0.04N)	74	2 - 3 g કેલ્શિયમ હાઇડ્રૉકસાઈડને 1 લિટર નિસ્યંદિત પાણીમાં હલાવો.
20.	લિટમસ દ્રાવણ (વાદળી)	-		10 g લિટમસ પદાર્થને નિસ્યંદિત પાણીમાં ઓગાળો અને દ્રાવણનું કુલ કદ 1 લિટર કરો.
21.	લિટમસ દ્રાવણ (લાલ)	-		વાદળી લિટમસના દ્રાવણમાં 10 ટીપા મંદ હાઈડ્રૉકલોરિક ઍસિડના ઉમેરો.
22.	મિથાઈલ ઓરેન્જ	-		1 g પદાર્થને 1 લિટર નિસ્યંદિત પાણીમા [ં] દ્રાવ્ય કરો.
23.	મરકયુરિક કલોરાઈડ	0.25 M (0.5 N)	272	70 g ક્ષારને નિસ્યંદિત પાણીના થોડા જથ્થામાં ઓગાળો અને નિસ્યંદિત પાણી વડે દ્રાવણનું ફુલ કદ 1 લિટર કરો.

				પરિશિષ્ટ III
24.	નેસ્લરનો પ્રક્રિયક			23 g મરક્યુરિક આયોડાઈડ અને 16 g પોટેશિયમ આયોડાઈડને નિસ્યંદિત પાણીમાં ઓગાળો અને દ્રાવણનું કદ 100 mL કરો. તેમાં 150 mL 4M NaOH નું દ્રાવણ ઉમેરો. તેને 24 કલાક રહેવા દો. બાદમાં દ્રાવણને નિતારી દો. દ્રાવણને ઘેરારંગની બોટલમાં રાખવું જોઈએ.
25.	પોટેશિયમ ક્રોમેટ	0.25 M (0.5 N)	194	49 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને દ્રાવણનું ફુલ
	K ₂ CrO ₄			કદ 1 લિટર કરો.
26.	પોટેશિયમ ડાયક્રોમેટ	0.15 M (1 N)	294	49 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને દ્રાવણનું કુલ કદ 1 લિટર કરો.
27.	પોટેશિયમ ફેરોસાયનાઈડ	0.15 M (0.5 N)	368	46 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને દ્રાવણને 1 લિટર સુધી મંદ કરો.
28.	પોટેશિયમ ફેરિસાયનાઈડ	0.2 M (0.5 N)	329	55 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને તેને 1 લિટર સુધી મંદ કરો.
29.	પોટેશિયમ આયોડાઈડ	0.5 M (0.5 N)	166	83 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને દ્રાવણનું કુલ કદ 1 લિટર કરો.
30.	પોટેશિયમ પરમેંગેનેટ	0.06 M (0.3 N)	158	10.0 g ક્ષારને 1 લિટર નિસ્યંદિત પાણીમાં ઓગાળો. દ્રાવણને ગરમ કરો અને તેને કાચના ઊન દ્વારા ગાળો.
31.	પોટેશિયમ થાયોસાયનેટ	0.5 M (0.5 N)	97	49.0 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને દ્રાવણનું કુલ કદ 1 લિટર કરો.
32.	ફિનોલ્ફથેલીન	1 %		1.0 g ઘન પદાર્થને 100 mL ઈથાઈલ આલ્કોહૉલમાં ઓગાળો.
33.	સિલ્વર નાઈટ્રેટ	0.1 M	170	17 g ક્ષારને 250 mL નિસ્યંદિત પાણીમાં ઓગાળો અને કથ્થાઈ રંગની બોટલમાં સંગ્રહ કરો.
34.	સોડિયમ એસિટેટ	5 M (5 N)	82	410 g ક્ષારને નિસ્યંદિત પાણીમાં ઓગાળો અને તેને 1 લિટર સુધી મંદ કરો.
35.	સોડિયમ નાઈટ્રોપ્રુસાઈડ			4 g ઘન પદાર્થને 100 mL નિસ્યંદિત પાણીમાં ઓગાળો.
36.	સ્ટાર્ચ			1.0 g દ્રાવ્ય સ્ટાર્ચની ઠંડા પાણીમાં લુગદી બનાવો. તેને 100 mL ઉકળતા પાણીમાં ધીમે-ધીમે ઉમેરી સતત હલાવતા રહો. 10 મિનિટ સુધી ઉકાળો અને ઠંડુ પાડો.
37.	સ્ટેનસ કલોરાઈડ	0.25 M (0.5 N)	226	55 g ક્ષારને 200 mL સાંદ્ર હાઈડ્રૉકલોરિક ઍસિડમાં ગરમ
	$SnCl \cdot 2H_2O$			કરીને (જો જરૂરી હોય તો) દ્રાવ્ય કરો. નિસ્યંદિત પાણી વડે
				મંદ કરી દ્રાવણનું કુલ કદ 1 લિટર કરો. ધાત્વીય ટિનના કેટલાક ટુકડાઓને આ દ્રાવણમાં ઉમેરો.
38.	પીળો એમોનિયમ સલ્ફાઈડ (NH _₄)₂Sx	6 N		એક બોટલમાં આશરે $200 \mathrm{mL}$ સાંદ્ર એમોનિયાનું દ્રાવણ લો અને તેને $ \mathrm{H}_2\mathrm{S} $ વાયુ વડે સંતૃપ્ત કરો. તેમાં $ 10 \mathrm{g} $ સલ્ફર પાઉડર અને $ 200 \mathrm{mL} $ સાંદ્ર $ \mathrm{NH}_4\mathrm{OH} $ ઉમેરો. યોગ્ય પ્રમાણમાં ગરમ કરો અને સલ્ફર ઓગળી જાય ત્યાં સુધી વધુ પ્રમાણમાં હલાવો. દ્રાવણને નિસ્યંદિત પાણી વડે $ 1 $ લિટર સુધી મંદ કરો.
39.	બિનજલીય માધ્યમમાં બફર			67.5 g એમોનિયમ કલોરાઈડને 570 mL સાંદ્ર એમોનિયાના
	દ્રાવણ (EDTA અનુમાપન માટે)			દ્રાવણમાં ઓગાળો અને દ્રાવણનું કુલ કદ 1 લિટર કરો.
40.	બિનજલીય માધ્યમમાં ઈરિયોક્રોમ	ł		0.5 g ઘન ઈરિયોક્રોમ બ્લૅક ટીને મિથેનોલમાં ઓગાળો
	બ્લૅક ટી (EDTA અનુમાપન માટે	ટે સૂચક)		અને તેનું કુલ કદ 100 mL કરો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

કાર્બનિક પૃથક્કરણમાં વપરાતા વિશેષ પ્રક્રિયકો

1. આલ્કોહોલ (1 : 1)	પરિશોધિ	t (rectified)	સ્પિરિટ અ	ત્રને નિસ્યંદિત	પાણીના સરખા	કદને મિશ્ર
---------------------	---------	---------------	-----------	-----------------	-------------	------------

કરો.

2. આલ્કોહોલીય પોટેશિયમ હાઇડ્રૉકસાઈડ દ્રાવણ : 11.2 g પોટેશિયમ હાઇડ્રૉકસાઈડને 100 mL ઈથેનોલમાં (અથવા પરિશોધિત

સ્પિરિટ) 30 મિનિટ ઉકાળીને ઓગાળો.

3. આલ્કલાઈન β-નેપ્થોલ : 10 g β-નેપ્થોલને 100 mL 10 % સોડિયમ હાઈડ્રૉકસાઈડના દ્રાવણમાં

ઓગાળો.

4. બારફોડ પ્રક્રિયક : 13 g કૉપર એસિટેટને 200 mL 1 % એસિટિક ઍસિડમાં ઓગાળો.

5. બેનેડિક્ટનું દ્રાવણ : 17.3 g સ્ફટિક કૉપર સલ્ફેટને 100 mL પાણીમાં ઓગાળો. ઉપરાંત અલગથી

173 g સોડિયમ સાઇટ્રેટ અને 100 g નિર્જળ સોડિયમ કાર્બોનેટને 800 mL પાણીમાં ઓગાળો. આ બંને દ્રાવણોને મિશ્ર કરો અને દ્રાવણનું કુલ કદ 1 લિટર

કરો.

6. સેરિક એમોનિયમ નાઈટ્રેટ દ્રાવણ : 40 g પ્રક્રિયકને 100 mL 2 N નાઈટ્રિક ઍસિડમાં ઓગાળો.

7. કોપર સલ્ફેટનું દ્રાવણ : 14 g કૉપર સલ્ફેટને 100 mL પાણીમાં ઓગાળો (14 % દ્રાવણ)

8. 2,4-ડાયનાઈટ્રોફિનાઈલહાઈડ્રૅઝિન પ્રક્રિયક

(i) પાણીમાં દ્રાવ્ય સંયોજનો માટે : 0.5 g ઘન પદાર્થને 42 mL સાંદ્ર HCl અને 54 mL પાણીના મિશ્રણમાં ઉમેરો

તથા તેને જળઉષ્મક પર ગરમ કરો. પાણી ઉમેરીને દ્રાવણનું કદ 250 mL

કરો

(ii) પાશીમાં અદ્રાવ્ય સંયોજનો માટે ઃ 1 g પ્રક્રિયકને 7.5 mL સાંદ્ર સલ્ફ્યુરિક ઍસિડમાં ઓગાળો. આ દ્રાવશને

7.5 mL પરિશોધિત સ્પિરિટમાં ધીમે-ધીમે ઉમેરો. પાણી ઉમેરીને દ્રાવણનું

કુલ કદ 250 mL કરો.

9. *ફેહલિંગનું દ્રાવણ A : 69.28 g કૉપર સલ્ફેટના સ્ફટિકોને 1 લિટર પાણીમાં ઓગાળો.

10. *ફેહલિંગનું દ્રાવણ B : 350 g રોચેલના ક્ષાર અને 100 g સોડિયમ હાઈડ્રૉકસાઈડને 1 લિટર પાણીમાં

દ્રાવ્ય કરો.

11. હાઇડ્રૉકિસલ એમાઈન હાઈડ્રૉકલોરાઈડ : 69.5 g શુષ્ક ઘન પદાર્થને 1 લિટર મિથાઈલ આલ્કોહૉલમાં દ્રાવ્ય કરો.

12. મોલિસ્ચનો પ્રક્રિયક : 10 g 1-નેપ્થોલને 90 mL પરિશોધિત સ્પિરિટમાં ઓગાળો.

13. નીનહાઈડ્રિન પ્રક્રિયક : 0.25 % નું જલીય દ્રાવણ બનાવો.
14. પોટેશિયમ પરમેંગેનેટ : 1 % નું જલીય દ્રાવણ બનાવો.

15. સ્ક્રીફનો પ્રક્રિયક : 1 g રોસાનીલીનને 50 mL પાણીમાં યોગ્ય પ્રમાણમાં ગરમ કરી ઓગાળો,

ઠંડું કરો, સલ્ફર ડાયૉકસાઈડ વાયુ વડે સંતૃપ્ત કરો. આ દ્રાવણને I લિટર સુધી પાણી વડે મંદ કરો. જો ગુલાબી રંગ ફરીથી જોવા મળે, તો તેમાં સંતૃપ્ત જલીય SO, ના દ્રાવણના થોડા ટીપા જ્યાં સુધી દ્રાવણનો રંગ દૂર ન થાય,

ત્યાં સુધી દ્રાવણને હલાવવાની સાથે ઉમેરો.

16. સેલીવાનોફ્રનો પ્રક્રિયક : 1 g રિસોર્સિનોલને 100 mL 20 % હાઈડ્રૉકલોરિક ઍસિડમાં ઓગાળો.

17. સોડિયમ હાઈપોકલોરાઈડ (2 M) : એક મોટા બીકરમાં 100 g NaOH ને 200 mL પાણીમાં દ્રાવ્ય કરો. દ્રાવણને

ઠંડુ કરો અને તેમાં આશરે 500 g બરફના ભૂકાને ઉમેરો. સાદી તુલા પર બીકરનું વજન કરો અને તેનું વજન 72 g વધે, ત્યાં સુધી તેમાં કલોરિન વાયુ પસાર કરો. દ્રાવણને પાણી વડે 1 લિટર સુધી મંદ કરો. આ દ્રાવણને ઠંડી અંધારી જગ્યાએ જ રાખવું, નહિ તો તે ધીમે-ધીમે વિઘટન પામે છે.

18. ટોલેન્સ પ્રક્રિયક : 1 mL 2 % સિલ્વરનાઈટ્રેટના દ્રાવણમાં અવક્ષેપ આવે, ત્યાં સુધી સોડિયમ

હાઈડ્રૉકસાઈડનું દ્રાવણ ઉમેરો. દ્રાવણને હલાવતા જઈ દ્રાવણ પારદર્શક બને ત્યાં સુધી એમોનિયમ હાઈડ્રૉકસાઈડ ઉમેરો. એમોનિયમ હાઈડ્રૉકસાઈડ વધુ પ્રમાણમાં ન ઉમેરાવો જોઈએ. હંમેશા તાજા બનાવેલા ટોલેનના પ્રક્રિયકનો

ઉપયોગ કરો.

^{*} ઉપયોગમાં લેતાં અગાઉ ફેહલિંગના દ્રાવણ A અને ફેહલિંગના દ્રાવણ B નાં સમાન કદને મિશ્ર કરો.

પરિશિષ્ટ IV

કેટલાંક ઉપયોગી કોષ્ટકો

કોષ્ટક 1 : મૂળભૂત ભૌતિક અચળાંકો

ભૌતિક અચળાંક	સંજ્ઞા	મૂલ્ય
ગુરુત્વપ્રવેગ	g	9.81 ms ⁻²
પરમાણ્વીય દળ એકમ	amu	$1.66053 \times 10^{-27} \text{ kg}$
એવોગેડ્રો અચળાંક	N_A	$6.02217 \times 10^{23} \text{ mol}^{-1}$
બોલ્ટ્ઝમેન અચળાંક	k	$1.38062 \times 10^{-23} \text{ J K}^{-1}$
ઈલેક્ટ્રોન વીજભાર	e	$1.602192 \times 10^{-19} \text{ C}$
ફ્રેરાડે અચળાંક	F	$9.64867 \times 10^{4} \mathrm{C \ mol^{-1}}$
વાયુ અચળાંક	R	8.314 J K ⁻¹ mol ⁻¹
હિમાંક (Ice-point) તાપમાન	T_{ice}	273.150 K
STP એ આદર્શવાયુનું મોલરકદ	$V_{\rm m}$	$2.24136 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1}$
શૂન્યાવકાશનો પરાવેદ્યુતાંક	Eo	8.854185×10^{-12}
		$kg^{-1} m^{-3}s^4 A^2$
પ્લાન્ક અચળાંક	h	$6.62620 \times 10^{-34} \text{ J s}$
રીડબર્ગ અચળાંક	$R_{ m w}$	$1.973731 \times 10^7 \mathrm{m}^{-1}$
પ્રમાશિત દબાશ (વાતાવરશ)	p	101325 N m ⁻²
પાણીનું ત્રિકબિંદુ		273016 K
શૂન્યાવકાશમાં પ્રકાશનો વેગ	c	$2.997925 \times 10^8 \text{ m s}^{-1}$

કોષ્ટક 2 ઃ કાર્બનિક સંયોજનોના સામાન્ય ગુણધર્મો

સંયોજન	ગલનબિંદુ ⁰C	ઉત્કલન	ઘનતા	વક્રીભવનાંક	10 ⁴ ×	10 ³ ×
		બિંદુ	kg m ⁻³	$(\mathbf{n}_{\mathbf{p}})$	સ્નિગ્ધતા	પૃષ્ઠતાણ
		${}^{0}\mathbf{C}$	(298 K)	(293 K)	$N s m^{-2}$	$N m^{-1}$
					(298 K)	(293 K)
એસિટિક ઍસિડ	16.7	117.9	1044.0	1.3716	11.55	27.8
એસિટોન	- 94.7	56.1	785.0	1.3588	3.16	23.7
એનિલીન	-6.3	184.1	1022.0 (293)	1.5863	3.71	42.9
બેન્ઝોઈક ઍસિડ	122.4	249.0	1266.0 (288)	1.504 (405)	-	_
કાર્બન ટેટ્રાકલોરાઈડ	-22.9	76.5	1584.0	1.4601	8.8	26.95
કલોરોબેન્ઝિન	- 45.2	132.0	1106.0	1.5241	7.97	33.56
કલોરોફોર્ <u>મ</u>	-63.5	61.7	1480.0	1.4459	5.42	27.14
સાયકલોહેકઝેન	6.6	80.7	774.0	1.42662	9.8	25.5
ડાયઈથાઈલઈથર	-116.2	34.51	714.0	1.3526	2.22	17.01
ઈથાઈલ એસિટેટ	-82.4	77.1	900.0 (293)	1.3723	4.41	23.9
ઈથેનોલ	-114.1	78.3	785.0	1.3611	10.6	22.75
ગ્લિસરોલ	18.07	290.0	1264.4	1.4746	942.0	63.4
હેકઝેન	-95.3	68.7	655.0	1.37506	2.94	18.43
મિથેનોલ	- 97.7	64.5	787.0	1.3288	5.47	22.61
નેપ્થેલીન	80.3	218.0	1180.0	1.4003(297)	-	-
ફિનોલ	40.9	181.8	1132.0	1.5509	-	-
ટોલ્યુઈન	- 95.1	110.6	862.0	1.4961	5.50	28.5

137

કોષ્ટક 3 : સામાન્ય અકાર્બનિક સંયોજનોની પાણીમાં દ્રાવ્યતા

એનાયનનું નામ	સંજ્ઞા	આ આયનો ધનાયનો સાથે દ્રાવ્ય સંયોજનો બનાવે છે. (દ્રાવ્યતા 0.1 M કરતાં વધુ)	અલ્પદ્રાવ્ય સંયોજનો બનાવે છે. (દ્રાવ્યતા 0.1 M કરતાં ઓછી)
નાઈટ્રેટ	NO_3^-	મોટાભાગના ધનાયનો	કોઈપણ નહિ
એસિટેટ	CH ₃ COO ⁻	મોટાભાગના ધનાયનો	Ag^+
કલોરાઈડ	Cl ⁻	મોટાભાગના ધનાયનો	Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺
બ્રોમાઈડ	Br^{-}	મોટાભાગના ધનાયનો	$Ag^{+}, Pb^{2+}, Hg_{2}^{2+}$
આયોડાઈડ	I ⁻	મોટાભાગના ધનાયનો	Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺
સલ્ફેટ	SO_4^{2-}	મોટાભાગના ધનાયનો	Ba ²⁺ , Sr ²⁺ , Pb ²⁺ , Ag ⁺
ક્રોમેટ	CrO_4^{2-}	મોટાભાગના ધનાયનો	Ba ²⁺ , Sr ²⁺ , Pb ²⁺ , Ag ⁺
સલ્ફાઈડ	S^{2-}	$\mathrm{NH}_4^+,$ આલ્કલી ધાતુ ધનાયનો,	મોટાભાગના અન્ય ધનાયનો
		આલ્કલાઈન અર્થ ધાતુ ધનાયનો	
હાઈડ્રૉકસાઈડ	OH-	$\mathrm{NH}_4^+,$ આલ્કલી ધાતુ અને	મોટાભાગના અન્ય ધનાયનો
		આલ્કલાઈન અર્થધાતુ તથા Ba²+, Sr²+	
કાર્બોનેટ	CO_3^{2-}	NH ₄ અને આલ્કલી ધાતુ ધનાયનો	મોટાભાગના અન્ય ધનાયનો
ફોસ્ફેટ	PO ₄ ³⁻	Li ⁺ સિવાય	

પરિશિષ્ટ ${f v}$

તત્ત્વો, તેમના પરમાણ્વીય ક્રમાંક અને મોલર દળ

	•			I		•		``
तत्त्व	સંજ્ઞા	પરમાણ્વીય	મોલર દળ		તત્ત્વ	સંજ્ઞા	પરમાણ્વીય •	મોલર દળ
		ક્રમાંક	(\mathbf{gmol}^{-1})				ક્રમાંક	(\mathbf{gmol}^{-1})
Actinium	Ac	89	227.03		Mercury	Hg	80	200.59
Aluminium	Al	13	26.98		Molybdenum	Mo	42	95.94
Americium	Am	95	(243)		Neodymium	Nd	60	144.24
Antimony	Sb	51	121.75		Neon	Ne	10	20.18
Argon	Ar	18	39.95		Neptunium	Np	93	(237.05)
Arsenic	As	33	74.92		Nickel	Ni	28	58.71
Astatine	At	85	210		Niobium	Nb	41	92.91
Barium	Ba	56	137.34		Nitrogen	N	7	14.0067
Berkelium	Bk	97	(247)		Nobelium	No	102	(259)
Beryllium	Be	4	9.01		Osmium	Os	76	190.2
Bismuth	Bi	83	208.98		Oxygen	O	8	16.00
Bohrium	Bh	107	(264)		Palladium	Pd	46	106.4
Boron	В	5	10.81		Phosphorus	P	15	30.97
Bromine	Br	35	79.91		Platinum	Pt	78	195.09
Cadmium	Cd	48	112.40		Plutonium	Pu	94	(244)
Caesium	Cs	55	132.91		Polonium	Po	84	210
Calcium	Ca	20	40.08		Potassium	K	19	39.10
Californium	Cf	98	251.08		Praseodymium	Pr	59	140.91
Carbon	C	6	12.01		Promethium	Pm	61	(145)
Cerium	Ce	58	140.12		Protactinium	Pa	91	231.04
Chlorine	Cl	17	35.45		Radium	Ra	88	(226)
Chromium	Cr	24	52.00		Radon	Rn	86 75	(222)
Cobalt	Co	27	58.93		Rhenium	Re	75 45	186.2
Copper	Cu	29	63.54		Rhodium	Rh	45 37	102.91
Curium	Cm	96 105	247.07		Rubidium	Rb	3 / 44	85.47
Dubnium	Db	105	(263)		Ruthenium	Ru		101.07
Dysprosium	Dу	66	162.50		Rutherfordium	Rf	104	(261)
Einsteinium	Es	99	(252)		Samarium Scandium	Sm Sc	62 21	150.35 44.96
Erbium	Er	68	167.26				106	(266)
Europium	Eu	63	151.96		Seaborgium Selenium	Sg Se	34	78.96
Fermium Fluorine	Fm F	100 9	(257.10)		Silicon	Si	34 14	28.08
Francium	r Fr	9 87	19.00 (223)		Silver		47	107.87
Gadolinium	Gd	64	157.25		Sodium	Ag Na	11	22.99
Gadoninum	Ga	31	69.72		Strontium	Sr	38	87.62
Gamuni	Ge	32	72.61		Sulphur	S	16	32.06
Gold	Au	32 79	196.97		Tantalum	Ta	73	180.95
Hafnium	Hf	79 72	178.49		Technetium	Te	43	(98.91)
Hassium	Hs	108	(269)		Tellurium	Te	52	127.60
Helium	He	2	4.00		Terbium	Tb	65	158.92
**	Но	67	164.93		Thallium	Tl	81	204.37
Holmium Hydrogen	Н	1	1.0079		Thorium	Th	90	232.04
Indium	In	49	114.82		Thulium	Tm	69	168.93
Iodine	I	53	126.90		Tin	Sn	50	118.93
Iridium	Îr	77	192.2		Titanium	Ti	22	47.88
Iron	Fe	26	55.85		Tungsten	W	74	183.85
Krypton	Kr	36	83.30		Ununbium	Uub	112	(277)
Lanthanum	La	57	138.91		Ununnilium	Uun	110	(269)
Lawrencium	Lr	103	(262.1)	ĺ	Unununium	Uuu	111	(272)
Lead	Pb	82	207.19	ĺ	Uranium	U	92	238.03
Lithium	Li	3	6.94	ĺ	Vanadium	V	23	50.94
Lutetium	Lu	71	174.96	ĺ	Xenon	Xe	54	131.30
Magnesium	Mg	12	24.31	ĺ	Ytterbium	Yb	70	173.04
Manganese	Mn	25	54.94	ĺ	Yttrium	Y	39	88.91
Meitneium	Mt	109	(268)	ĺ	Zinc	Zn	30	65.37
Mendelevium	Md	101	258.10	ĺ	Zirconium	Zr	40	91.22
Litteridere vidiri	1 VI U	101	230.10	1	L	~1	10	71.22

કૌંસમાં દર્શાવેલ મોલરદળનું મૂલ્ય સૌથી વધુ અર્ધ આયુષ્ય ધરાવતા સમસ્થાનિકોનું છે.

પરિશિષ્ટ VI

કેટલાંક ઉપયોગી રૂપાંતર ગુણકો

દળ અને વજનના સામાન્ય એકમો	લંબાઈના સામાન્ય એકમો		
1 pound = 453.59 gram	1 inch = 2.54 centimetres (exactly)		
1 pound = 453.59 gram = 0.45359 kilogram	1 mile = 5280 feet = 1.609 kilometre		
1 kilogram = 1000 gram = 2.205 pound	1 yard = 36 inche = 0.9144 metre		
1 gram = 10 decigram = 100 centigram = 1000 milligram	1 metre = 100 centimetre		
1 gram = 6.022×10^{23} atomic mass unit or u	= 39.37 inche		
1 atomic mass unit = 1.6606×10^{-24} gram	= 3.281 feet		
1 metric tonne = 1000 kilogram			
= 2205 pound	= 1.094 yard		
કદના સામાન્ય એકમો	1 kilometre = 100 metre		
1 quart = 0.9463 litre	= 1094 yard		
1 litre = 1.056 quart	= 0.6215 mile		
1 litre = 1 cubic decimetre = 1000 cubic	1 Angstrom = 1.0×10^{-8} centimetre		
centimetre = 0.001 cubic metre	= 0.10 nanometre		
1 millilitre = 1 cubic centimetre = 0.001 litre	= 3.937 × 10 ⁻⁹ inch બળ* અને દબાણના સામાન્ય એકમો		
= 1.056×10^{-3} quart 1 cubic foot = 28.316 litre = 29.902 quart			
= 7.475 gallon			
– 7.473 ganon ઊર્જાના સામાન્ય એકમો	1 atmosphere = 760 millimetres of mercury = 1.013×10^5 pascal		
$1 \text{ joule} = 1 \times 10^7 \text{ erg}$			
1 thermochemical calorie** = 4.184 joule	= 14.70 pounds per square inch		
$= 4.184 \times 10^7 \text{ erg}$	1 bar = 10 ⁵ pascal		
$=4.129 \times 10^{-2}$ litre-atmosphere	1 torr = 1 millimetre of mercury		
$= 2.612 \times 10^{19}$ electron volt	$1 \text{ pascal} = 1 \text{ kg/ms}^2 = 1 \text{ N/m}^2$		
$1 \text{ erg} = 1 \times 10^{-7} \text{ joule} = 2.390.1 \times 10^{-8} \text{ calorie}$	તાપમાન		
1 electron volt = 1.6022×10^{-19} joule	SI આધારિત એકમ : કેલ્વિન (K)		
$= 1.6022 \times 10^{-12} \text{ erg}$			
$= 96.487 \text{ kJ/mol}^+$	$K = -273.15$ $^{\circ}C$		
1 litre-atmosphere = 24.217 calories	$K = {}^{0}C + 273.15$		
= 101.32 joule = $1.0132 \times 10^9 \text{ erg}$	$^{0}\text{F} = 1.8(^{0}\text{C}) + 32$		
1 British thermal unit = 1055.06 joule	°F-32		
$= 1.5506 \times 10^{10} \text{ erg}$	$^{\circ}C = \frac{^{\circ}F - 32}{1.8}$		
= 252.2 calorie			

^{*} બળ : 1 ન્યૂટન (N) = 1 kg m/s^2 ; એટલે કે બળ એટલે જ્યારે તેને 1 સેકન્ડ માટે લગાડવામાં આવે, તો 1 કિલોગ્રામ દળને 1 મીટર પ્રતિસેકન્ડ જેટલો વેગ આપે છે.

^{**} એક ગ્રામ પાણીના તાપમાનમાં 14.5 °C થી 15.5 °C ના વધારા માટે જરૂરી ઉષ્માનો જથ્થો.

⁺ નોંધવું જોઈએ કે અન્ય એકમો પ્રતિ ક્રણ છે અને તેઓની સરખામણી કરવા માટે 6.022×10^{23} વડે ગુણવા

પરિશિષ્ટ VII 298 K તાપમાને વિદ્યુતરસાયણમાં પ્રમાણિત પોટેન્શિયલ

 રિડકશન અર્ધ-પ્રક્રિયા	E-/V	રિડકશન અર્ધ-પ્રક્રિયા	$\mathbf{E}^{-}/\mathbf{V}$
$H_4XeO_6 + 2H^+ + 2e^- \rightarrow XeO_3 + 3H_2O$	+ 3.0	$Pu^{4+} + e^- \rightarrow Pu^{3+}$	+0.97
$F_2 + 2e^- \rightarrow 2F^-$	+2.87	$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	+0.96
$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	+2.07	$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	+0.92
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.05	$ClO^{-} + H_{2}O + 2e^{-} \rightarrow Cl^{-} + 2OH^{-}$	+0.89
$Ag^+ + e^- \rightarrow Ag$	+1.98	$Hg^{2+} + 2e^- \rightarrow Hg$	+0.86
$Co^{3+} + e^- \rightarrow Co^{2+}$	+1.81	$NO_3^- + 2H^+ + e^- \rightarrow NO_2^- + H_2^-O$	+0.80
$\mathrm{H_2O_2} + 2\mathrm{H^+} + 2\mathrm{e^-} \rightarrow 2\mathrm{H_2O}$	+1.78	$Ag^+ + e^- \rightarrow Ag$	+0.80
$Au^+ + e^- \rightarrow Au$	+1.69	$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	+0.79
$Pb^{4+} + 2e^- \rightarrow Pb^{2+}$	+1.67	$Fe^{3+} + e^- \rightarrow Fe^{2+}$	+0.77
$2\text{HCIO} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Cl}_2 + 2\text{H}_2\text{O}$	+1.63	$BrO^{-} + H_{2}O + 2e^{-} \rightarrow Br^{-} + 2OH^{-}$	+0.76
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	+1.61	$Hg_2SO_4 + 2e^- \rightarrow 2Hg + SO_4^{2-}$	+0.62
$2HBrO + 2H^{+} + 2e^{-} \rightarrow Br_{2} + 2H_{2}O$	+1.60	$MnO_4^{2-} + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^-$	+0.60
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	+1.51	$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+0.56
$Mn^{3+} + e^- \rightarrow Mn^{2+}$	+1.51	$I_2 + 2e^- \rightarrow 2I^-$	+0.54
$Au^{3+} + 3e^- \rightarrow Au$	+1.40	$I_3^- + 2e^- \rightarrow 3I^-$	+0.53
$Cl_2 + 2e^- \rightarrow 2Cl^-$	+1.36	$Cu^+ + e^- \rightarrow Cu$	+0.52
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	+1.33	$NiOOH + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$	+0.49
$O_3 + H_2O + 2e^- \rightarrow O_2 + 2OH^-$	+1.24	$Ag_2CrO_4 + 2e^- \rightarrow 2Ag + CrO_4^{2-}$	+0.45
$\mathrm{O_2} + 4\mathrm{H^+} + 4\mathrm{e^-} \rightarrow 2\mathrm{H_2O}$	+1.23	$\mathrm{O_2} + 2\mathrm{H_2O} + 4\mathrm{e}^- \rightarrow 4\mathrm{OH}^-$	+0.40
$ClO_4^- + 2H^+ + 2e^- \rightarrow ClO_3^- + 2H_2O$	+1.23	$ClO_4^- + H_2O + 2e^- \rightarrow ClO_3^- + 2OH^-$	+0.36
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	+1.23	$[Fe(CN)_{6}]^{3-} + e^{-} \rightarrow [Fe(CN)_{6}]^{4-}$	+0.36
$Pt^{2+} + 2e^{-} \rightarrow Pt$	+1.20	$Cu^{2+} + 2e^{-} \rightarrow Cu$	+0.34
$Br_2 + 2e^- \rightarrow 2Br^-$	+1.09	$\mathrm{Hg_2Cl_2} + 2\mathrm{e^-} \rightarrow 2\mathrm{Hg} + 2\mathrm{Cl^-}$	+0.27

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન			
$\overline{AgCl + e^-} \to Ag + Cl^-$	+0.27	$S + 2e^- \rightarrow S^{2-}$	-0.48
$\mathrm{Bi^{3+}} + \mathrm{3e^-} \rightarrow \mathrm{Bi}$	+0.20	$In^{3+} + e^- \rightarrow In^{2+}$	-0.49
$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	+0.17	$\mathrm{U}^{4+} + \mathrm{e}^- \rightarrow \mathrm{U}^{3+}$	-0.61
$Cu^{2^+} + e^- \rightarrow Cu^+$	+0.16	$Cr^{3+} + 3e^- \rightarrow Cr$	- 0.74
$\mathrm{Sn^{4+}} + 2\mathrm{e^-} \rightarrow \mathrm{Sn^{2+}}$	+0.15	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$AgBr + e^- \rightarrow Ag + Br^-$	+0.07	$Cd(OH)_2 + 2e^- \rightarrow Cd + 2OH^-$	-0.81
$Ti^{4+} + e^- \rightarrow Ti^{3+}$	0.00	$2\mathrm{H_2O} + 2\mathrm{e}^- \rightarrow \mathrm{H_2} + 2\mathrm{OH}^-$	-0.83
$2\mathrm{H^+} + 2\mathrm{e^-} \rightarrow \mathrm{H_2}$ (વ્યાખ્યા દ્વા	રા) 0.0	$Cr^{2+} + 2e^- \rightarrow Cr$	-0.91
$Fe^{3+} + 3e^- \rightarrow Fe$	-0.04	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^-$	-0.08	$V^{2^+} + 2e^- \rightarrow V$	-1.19
$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13	$Ti^{2+} + 2e^- \rightarrow Ti$	-1.63
$In^+ + e^- \rightarrow In$	-0.14	$A1^{3+} + 3e^- \rightarrow A1$	-1.66
$Sn^{2+} + 2e^- \rightarrow Sn$	-0.14	$\mathrm{U}^{\scriptscriptstyle 3+} + 3\mathrm{e}^{\scriptscriptstyle -} \to \mathrm{U}$	-1.79
$AgI + e^- \rightarrow Ag + I^-$	-0.15	$Sc^{3+} + 3e^- \rightarrow Sc$	-2.09
$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.36
V^{3+} + $e^- \rightarrow V^{2+}$	-0.26	$Ce^{3+} + 3e^{-} \rightarrow Ce$	-2.48
$Co^{2+} + 2e^- \rightarrow Co$	-0.28	$La^{3+} + 3e^- \rightarrow La$	-2.52
$In^{3+} + 3e^- \rightarrow In$	-0.34	$Na^{\scriptscriptstyle +} + e^{\scriptscriptstyle -} \rightarrow Na$	-2.71
$Tl^+ + e^- \rightarrow Tl$	-0.34	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.87
$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.36	$Sr^{2+} + 2e^- \rightarrow Sr$	-2.89
$Ti^{3+} + e^- \rightarrow Ti^{2+}$	0.37	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.91
$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40	$Ra^{2+} + 2e^- \rightarrow Ra$	-2.92
$In^{2+} + e^- \rightarrow In^+$	-0.40	$Cs^+ + e^- \rightarrow Cs$	-2.92
$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.41	$Rb^{\scriptscriptstyle +} + e^{\scriptscriptstyle -} \rightarrow Rb$	-2.93
$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44	$K^{\scriptscriptstyle +}$ + $e^{\scriptscriptstyle -}$ \rightarrow K	-2.93
$In^{3+} + 2e^- \rightarrow In^+$	-0.44	$Li^+ + e^- \rightarrow Li$	-3.05

પરિશિષ્ટ VIII

લઘુગણક (Logarithms)

ઘણીવાર મોટી સંખ્યાના ગુણાકાર, ભાગાકાર અથવા સંમેય ઘાતનો સંખ્યાત્મક અભિવ્યક્તિમાં સમાવેશ થાય છે. આવી ગણતરીઓ માટે લઘુગણક ઘણુ ઉપયોગી છે. તે મુશ્કેલ ગણતરીઓને સરળ બનાવે છે. રસાયણવિજ્ઞાનમાં રાસાયણિકગતિકી, ઉષ્માગતિશાસ્ત્ર, વીજરસાયણ-વિજ્ઞાન વગેરેના કોયડા ઉકેલવામાં લઘુગણક મૂલ્યોની જરૂર પડે છે. આપણે સૌ પ્રથમ આ સંકલ્પનાની પ્રસ્તાવના જોઈશું અને જેને લઘુગણક સાથે કામ કરવામાં અનુસરવુ પડશે તેવા નિયમોની ચર્ચા કરીશું, અને ત્યારબાદ આ પદ્ધતિ અનેક કોયડાઓને લાગું પાડીશું જેથી મુશ્કેલ ગણતરીઓ કેવી રીતે સરળ બને છે તે દર્શાવી શકીશું.

```
આપણે જાણીએ છીએ કે,
2^3 = 8, 3^2 = 9, 5^3 = 125, 7^0 = 1
```

સામાન્ય રીતે ધન વાસ્તવિક સંખ્યા a માટે અને સંમેય સંખ્યા m માટે ધારોકે $a^m = b$, જ્યાં b વાસ્તવિક સંખ્યા છે.

બીજા શબ્દોમાં કહીએ તો b આધાર aનો m ઘાત છે.

આને ૨જૂ કરવાનો બીજો રસ્તો છે કે m આધાર a પરના b નો લઘુગણક છે.

જો ધન વાસ્તવિક સંખ્યા a માટે, $a \neq 1$

 $a^m = h$

આને આપણે એમ કહીએ છીએ કે m, a ના આધાર પરના bનો લઘુગણક છે.

આને આપણે આમ લખી શકીએ

"log" શબ્દ "logarithm (લઘુગણક)" શબ્દનું ટૂંકુ રૂપ છે.

આમ હવે આપણને મળશે.

$$\log_2 8 = 3$$

કારણ કે
$$2^3 = 8$$

$$\log_{3} 9 = 2$$

$$\log_{5} 125 = 3$$

$$\log_5 125 = 3 \qquad \text{size } \S \quad 5^3 = 125$$

$$\log_7 1 = 0$$

લઘુગણકના નિયમો

નીચેની ચર્ચામાં આપણે કોઈપણ આધાર a પર લઘુગણક લઈશું (a>0 અને $a\neq 1)$

પ્રથમ નિયમ : $\log_a(mn) = \log_a m + \log_a n$

સાબિતી : ધારો કે $\log_{a} m = x$ અને $\log_{a} n = y$ તો

$$a^x = m$$
; $a^y = n$

તેથી $mn = a^x \cdot a^y = a^{x+y}$

હવે લઘુગણકની વ્યાખ્યામાંથી એ ફલિત થાય છે કે

 $\log_{a}(mn) = x + y = \log_{a}m + \log_{a}n$

બીજો નિયમ : $\log_a \left(\frac{\mathbf{m}}{\mathbf{n}}\right) = \log_a \mathbf{m} - \log_a \mathbf{n}$

સાબિતી : ધારોકે $\log_a m = x$, $\log_a n = y$

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

તો
$$a^x = m$$
, $a^y = n$

તેથી
$$\frac{m}{n} = \frac{a^x}{a^y} = a^{x-y}$$

એટલા માટે
$$\log_a \left(\frac{m}{n}\right) = x - y = \log_a m - \log_a n$$

ત્રીજોનિયમ :

$$\log_{a}(m^{n}) = n \log_{a}m$$

સાબિતી : અગાઉ પ્રમાણે, જો $\log_a m = x$, તો $a^x = m$

તેથી
$$m^n = (a^x)^n = a^{xn}$$
, જે આપશે

$$\log_{a}(m^{n}) = nx = n \log_{a} m$$

આમ પ્રથમ નિયમ પ્રમાણે : બે સંખ્યાઓના ગુણાકારનો લઘુગણક તેઓના લઘુગણકના સરવાળા બરાબર થશે. તે જ પ્રમાણે બીજો નિયમ દર્શાવે છે : બે સંખ્યાના ગુણોત્તરનો લઘુગણક તેઓના લઘુગણકનો તફાવત છે. આમ, આ નિયમોનો ઉપયોગ ગુણાકાર / ભાગાકારના કોયડાને સરવાળા / બાદબાકીમાં ફેરવે છે. જે ગુણાકાર અને ભાગાકાર કરવા કરતાં વધુ સરળ છે. આથી જ સંખ્યાત્મક ગણતરીઓમાં લઘુગણક શા માટે ઉપયોગી છે તે સમજાશે.

10 આધાર પર લઘુગણક

સંખ્યા 10 લખવાની સંખ્યાના આધારને કારણે, લઘુગણકનો ઉપયોગ 10 ના આધાર પર ઘણી અનુકૂળ પડે છે.

$$\log_{10} 10 = 1$$
 કારણ કે $10^1 = 10$

$$\log_{10} 100 = 2$$
 size $\frac{10^2}{100} = 100$

$$\log_{10} 10000 = 4$$
 size $\frac{1}{2} \cdot 10^4 = 10000$

$$\log_{10} 0.01 = -2$$
 size $\frac{1}{2} 10^{-2} = 0.01$

$$\log_{10} 0.001 = -3$$
 size $\frac{10^{-3}}{} = 0.001$

અને
$$\log_{10} 1 = 0$$
 કારણ કે $10^0 = 1$

ઉપરના પરિણામો સૂચવે છે કે જો n એ 10 નો સંકલન (integral) ઘાત હોય, એટલે કે 1ની પાછળ કેટલાક શૂન્ય અથવા 1ની આગળ તરત જ આવતા શૂન્ય દશાંશ ચિહ્નની જમણી બાજુ આવે, તો n સહેલાઈથી મેળવી શકાય.

જો n, 10 ના આધારનો સંકલન ઘાત ન હોય, તો log n ની ગણતરી કરવી સહેલી નથી. પરંતુ ગણિતશાસ્ત્રીઓએ કેટલાક કોપ્ટકો બનાવ્યા છે જેમાંથી આપણે 1 થી 10 વચ્ચેની ધન સંખ્યાના લઘુગણકના અંદાજીત મૂલ્ય વાંચી શકીએ છીએ અને આ આપણા માટે કોઈપણ સંખ્યા જે દશાંશ રૂપમાં દર્શાવવામાં આવી હોય તેના લઘુગણક ગણવા માટે પૂરતા છે. આ હેતુ માટે આપણે હંમેશા આપેલ દશાંશને 10ના સંકલન ઘાતના અને 1 થી 10 વચ્ચેની સંખ્યાના ગુણાકાર તરીકે દર્શાવીએ છીએ.

દશાંશનું પ્રમાણિત સ્વરૂપ

આપણે કોઈપણ સંખ્યાને દશાંશ સ્વરૂપમાં દર્શાવી શકીએ છીએ, (i) 10 ના સંકલન ઘાત અને (ii) 1 અને 10 વચ્ચેની સંખ્યાને ગુણાકાર તરીકે ૨૪ કરી શકીએ.

કેટલાંક ઉદાહરણો આપ્યા છે :

(i) 25.2, 10 અને 100 ની વચ્ચે રહે છે.

પરિશિષ્ટ VIII

$$25.2 = \frac{25.2}{10} \times 10 = 2.52 \times 10^{1}$$

(ii) 1038.4, 1000 અને 10000 ની વચ્ચે રહે છે.

$$1038.4 = \frac{1038.4}{1000} \times 10^3 = 1.0384 \times 10^3$$

(iii) 0.005, 0.001 અને 0.01 ની વચ્ચે રહે છે.

$$\therefore 0.005 = (0.005 \times 1000) \times 10^{-3} = 5.0 \times 10^{-3}$$

(iv) 0.00025, 0.0001 અને 0.001 ની વચ્ચે રહે છે.

$$\therefore 0.00025 = (0.00025 \times 10000) \times 10^{-4} = 2.5 \times 10^{-4}$$

દરેક કિસ્સામાં આપણે દશાંશને 10ના ઘાત વડે ગુણીએ છીએ કે ભાગીએ છીએ. જેથી શૂન્ય વગરનો આંક દશાંશ ચિહ્નની ડાબી બાજુએ આવે અને તે જ 10 ના ઘાતની વિપરિત પ્રક્રિયા કરીએ છીએ જેને અલગથી દર્શાવીએ છીએ.

આમ, કોઈપણ ધન દશાંશને આ રૂપમાં લખી શકાય.

$$n = m \times 10^p$$

જ્યાં પૂર્ણાંક (ધન, શૂન્ય અથવા ઋણ) છે અને $1 \le m < 10$ આને "nનું પ્રમાણિત રૂપ" કહે છે.

કાર્યગત (Working) નિયમો

- 1. દશાંશ ચિહ્નને જરૂર હોય, તે પ્રમાણે ડાબી કે જમણીબાજુ ખસેડો જેથી શૂન્ય ન હોય, તે અંક દશાંશ ચિહ્નની ડાબી બાજુ આવે.
- 2. (i) જો તમે p સ્થાન ડાબી બાજુ ખસો, તો 10^{p} વડે ગુણો.
 - (ii) જો તમે p સ્થાન જમણી બાજુ ખસો, તો 10^{-p} વડે ગુણો.
 - (iii) જો તમે દશાંશ ચિહ્નથી બિલકુલ ખસો નહિ તો 10° વડે ગુણો.
 - (iv) હવે 10 ના ઘાતથી મળેલ નવો દશાંશ લખો (તબક્કો 2) જેથી આપેલા દશાંશનું પ્રમાણિત રૂપ મળશે.

પૂર્ણાંક (Characteristic) અને અપૂર્ણાંશ (Mantissa)

nના પ્રમાણિત સ્વરૂપને ધ્યાને લો.

$$n = m \times 10^{p} \text{ sui}, 1 \le m < 10$$

10 ના આધારનો લઘુગણક લેતાં અને લઘુગણકના નિયમોનો ઉપયોગ કરતાં,

 $\log n = \log m + \log 10^{P}$

$$= \log m + p \log 10$$

$$= p + \log m$$

અહિંયા, p પૂર્ણાંક છે. અને 1 ≤ m < 10 હોવાથી 0 ≤ log m < 1 થાય. એટલે કે m, 0 અને 1 ની વચ્ચે રહે છે. જયારે log n ને p + log m તરીકે દર્શાવીએ, જયાં p પૂર્ણાંક છે અને 0 < log m < 1 છે. ત્યારે આપણે કહીએ છીએ કે p એ log n નો "પૂર્ણાંક" છે અને log m એ log nનો અપૂર્ણાંશ છે. એ નોંધો કે પૂર્ણાંક હંમેશા પૂર્ણ અંક હોય છે - ધન, ઋણ અથવા શૂન્ય તથા અપૂર્ણાંશ કદી ઋણ હોતો નથી અને તે હંમેશા 1 કરતાં ઓછો હોય છે. જો આપણે log n ના પૂર્ણાંક અને અપૂર્ણાંક શોધી શકીએ, તો log n મેળવવા માટે આપણે માત્ર તેમને ઉમેરવાના જ હોય છે.

આમ, log n શોધવા માટે આપણે નીચે પ્રમાણે કરવું પડશે.

n ને પ્રમાણિત રૂપમાં મૂકો જેમ કે,

$$n = m \times 10^{p}, 1 \le m < 10$$

- પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન
- 2. આ અભિવ્યક્તિ (10 નો ઘાતાંક) માંથી log n નો p પૂર્શાંક વાંચવામાંથી દૂર કરો.
- 3. log m નેકોષ્ટકમાંથી મેળવો, જે નીચે સમજાવેલ છે.
- 4. $\log n = p + \log m$ લખો.

જો n સંખ્યાનો પૂર્ણાંક p હોય, જેમ કે 2 અને અપૂર્ણાંશ 0.4133 હોય, તો $\log n = 2 + 0.4133$ થાય. જેને આપણે 2.4133 તરીકે લખીશું. ધારો કે સંખ્યા mનો પૂર્ણાંક p ને -2 કહો અને અપૂર્ણાંશને 0.4123 કહો તો $\log m = -2 + 0.4123$ થાય. આને આપણે -2.4123 તરીકે લખી શકીએ નહિ (શા માટે ?). આ મૂંઝવણ દૂર કરવા આપણે -2 ને આ પ્રમાણે લખીએ છીએ, $\log m = \overline{2}.4123$.

ચાલો, હવે આપણે અપૂર્ણાંશ શોધવા માટે લઘુગણકના કોષ્ટકનો કેવી રીતે ઉપયોગ કરીશું તે સમજીએ. પરિશિષ્ટના અંતે કોષ્ટક આપેલું છે.

કોષ્ટકનું અવલોકન કરો, દરેક આડી હરોળ બે અંકથી શરૂ થાય છે, 10, 11, 12, 97, 98, 99. દરેક ઊભા સ્તંભ એક અંકી સંખ્યાથી શરૂ થાય છે, 0, 1, 2,, 9. જમણી બાજુ આપણી પાસે એક વિભાગ છે જેને **"સરેરાશ તફાવત"** કહેવામાં આવે છે, જેમાં 9 સ્તંભો છે જેના મથાળે 1, 2,, 9 દર્શાવેલા હોય છે.

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
												••	••		••				
61	7853	7860	7868	7875	7882	7889	7896	7803	7810	7817	1	1	2	3	4	4	5	6	6
62	7924	7931	7935	7945	7954	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	6	6

હવે ધારો કે આપણે log (6.234) નું મૂલ્ય શોધવું છે, તો 62 થી શરૂ થતી હરોળમાં જોવાનું શરૂ કરો. આ હરોળમાં મથાળે 3 દર્શાવતા સ્તંભમાં રહેલા અંકને જૂઓ. તે અંક 7945 છે. આનો અર્થ એમ થાય કે,

 $\log(6.230) = 0.7945*$

પરંતુ આપણે તો $\log (6.234)$ જોઈએ છે. આથી આપણો જવાબ 0.7945 કરતાં સહેજ વધારે હશે. કેટલો વધારે ? આ આપણે સરેરાશ તફાવત વિભાગમાં જોઈશું. આપણો ચોથો અંક 4 છે. તેથી સરેરાશ તફાવતના વિભાગમાં મથાળે 4 દર્શાવતા સ્તંભમાં જૂઓ (હરોળ 62 માં). આપણને સંખ્યા 3 મળશે. તેથી 3 ને 7945 માં ઉમેરો. આપણને 7948 મળશે. તેથી અંતે મળશે, $\log (6.234) = 0.7948$. બીજુ ઉદાહરણ લો. $\log (8.127)$ શોધવા માટે આપણે 81 સંખ્યાવાળી હરોળમાં 2 સંખ્યાવાળા સ્તંભમાં જોઈએ તો આપણને 9096 મળે છે. આપણે તે જ હરોળમાં આગળ વધીશું અને સરેરાશ તફાવત 7 ની નીચે 4 મળશે. તેને 9096 માં ઉમેરીશું અને તેથી આપણને 9100 મળશે. તેથી, $\log (8.127) = 0.9100$

log n આપેલ હોય, તો n શોધવો

આપણે હજુ સુધી ધન સંખ્યા n આપેલી હોય તેનો log n શોધવાની પદ્ધતિની ચર્ચા કરી. હવે આપણે તેનાથી વિપરિત તરફ જઈએ, એટલે કે log n આપેલ હોય તો n શોધવો અને આ હેતુ માટેની પદ્ધતિ આપવી. જો log n = t તો, આપણે કોઈકવાર કહીએ છીએ n = antilog t. આથી આપણું કાર્ય એ છે કે t આપેલો છે અને તેનો પ્રતિલઘુગણક શોધવો. આ માટે આપણે તૈયાર આપેલા પ્રતિલઘુગણક કોષ્ટકનો ઉપયોગ કરીએ છીએ.

ધારો કે log n = 2.5372

n શોધવા માટે, સૌ પ્રથમ log n ના અપૂર્શાંશ લો. આ કિસ્સામાં તે 0.5372 છે (ખાત્રી કરી કે તે ધન છે). આ સંખ્યાનો પ્રતિલઘુગણક લેવા માટે પ્રતિલઘુગણક કોષ્ટકનો ઉપયોગ લઘુગણક કોષ્ટકની જેમ જ કરો.

* જો કે અહીં નોંધવું જોઈએ કે કોષ્ટકમાં દર્શાવેલા મૂલ્યો ચોક્કસ હોતા નથી. તે માત્ર અંદાજિત મૂલ્યો હોય છે, જો કે આપણે સમાનતા માટેની નિશાની વાપરીએ છીએ જે તેઓ ચોક્કસ મૂલ્ય દર્શાવે છે તેવો પ્રભાવ પાડે છે. આવી સમાન પદ્ધતિ સંખ્યાના પ્રતિલઘુગણક માટે અનુસરી શકીએ છીએ.

પરિશિષ્ટ VIII

આ પ્રતિલઘુગણક કોપ્ટકમાં 0.53 વાળી હરોળમાં 7 વાળા સ્તંભની હેઠળ 3443 મળે છે અને છેલ્લા અંક 2 માટે તે જ હરોળમાં સરેરાશ તફાવતના વિભાગમાં અંક 2 છે. આથી કોપ્ટક 3445 મૂલ્ય આપે છે. આથી,

antilog
$$(0.5372) = 3.445$$

હવે $\log n = 2.5372$, $\log n$ નો પૂર્ણાંક 2 છે. તેથી n નું પ્રમાશિત સ્વરૂપ $n = 3.445 \times 10^2$ અથવા n = 344.5 થાય.

ઉદાહરણ 1

જો
$$\log x = 1.0712$$
 તો x શોધો.

ઉકેલ: પ્રતિ લઘુગણક કોપ્ટકમાંથી આપણને 0712 ને અનુવર્તી સંખ્યા 1179 મળે છે. $\log x$ નો પૂર્ણાંક 1 છે, તેથી મળશે,

$$x = 1.179 \times 10^{1}$$

$$= 11.79$$

ઉદાહરણ 2

જો
$$\log x = \overline{2}$$
.1352, તો x શોધો.

ઉકેલ : પ્રતિલઘુગણક કોષ્ટકમાંથી, આપણને 1352 ને અનુવર્તી સંખ્યા 1366 મળે છે. આ માટે પૂર્ણાંક $\overline{2}$ છે એટલે કે -2. તેથી,

$$x = 1.366 \times 10^{-2} = 0.01366$$

સંખ્યાત્મક ગણતરીઓમાં લઘુગણકનો ઉપયોગ

ઉદાહરણ 1

$$6.3 \times 1.29$$
 શોધો.

ઉકેલ : ધારો કે
$$x = 6.3 \times 1.29$$

$$\operatorname{cli} \log x = \log (6.3 \times 1.29) = \log 6.3 + \log 1.29$$

હવે.

$$\log 6.3 = 0.7993$$

$$\log 1.29 = 0.1106$$

$$\log x = 0.9099$$

પ્રતિલઘુગણક લેતાં, x = 8.127

ઉદાહરણ 2

$$\frac{(1.23)^{1/3}}{11.2 \times 23.5}$$
 શોધો.

ઉકેલ : ધારો કે
$$x = \frac{(1.23)^{\frac{3}{2}}}{11.2 \times 23.5}$$

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

તેથી
$$\log x = \log \frac{(1.23)^{\frac{3}{2}}}{11.2 \times 23.5}$$

$$= \frac{3}{2} \log 1.23 - \log (11.2 \times 23.5)$$

$$= \frac{3}{2} \log 1.23 - \log 11.2 - \log 23.5$$
હવે,

$$\log 1.23 = 0.0899$$

$$\frac{3}{2} \log 1.23 = 0.13485$$

$$\log 11.2 = 1.0492$$

$$\log 23.5 = 1.3711$$

$$\log x = 0.13485 - 1.0492 - 1.3711$$

$$= \overline{3}.71455$$
∴ $x = 0.005183$

ઉદાહરણ 3

$$\sqrt{\frac{(71.24)^5 \times \sqrt{56}}{(2.3)^7 \times \sqrt{21}}} \quad \text{ શોધો}$$
ઉકેલ : ધારો કે, $x = \sqrt{\frac{(71.24)^5 \times \sqrt{56}}{(2.3)^7 \times \sqrt{21}}}$
તેથી $\log x = \frac{1}{2} \log \left[\frac{(71.24)^5 \times \sqrt{56}}{(2.3)^7 \times \sqrt{21}} \right]$

$$= \frac{1}{2} [\log (71.24)^5 + \log \sqrt{56} - \log (2.3)^7 - \log \sqrt{21}]$$

$$= \frac{5}{2} \log 71.24 + \frac{1}{4} \log 56 - \frac{7}{2} \log 2.3 - \frac{1}{4} \log 21$$

હવે, લઘુગણક કોષ્ટકનો ઉપયોગ કરતાં,

$$\log 71.24 = 1.8527,$$

$$\log 56 = 1.7482$$

$$\log 2.3 = 0.3617$$
,

$$\log 21 = 1.3222$$

$$\therefore \log x = \frac{5}{2}(1.8527) + \frac{1}{4}(1.7482) - \frac{7}{2}(0.3617) - \frac{1}{4}(1.3222)$$

$$= 3.4723$$

$$x = 2967$$

લઘુગણક

કોષ્ટક 1

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	5 4	9	13 12	17 16	21 20	26 24	30 28	34 32	38 36
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8 7	12 11	16 15	20	23 22	27 26	31 29	35 33
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	11	14	18	21	25	28	32
											3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6 7	10 10	13 13	16 16	19 19	23 22	26 25	29 29
14	1461	1492	1523	1553	1584	1614	1614	1673	1703	1732	3	6 6	9 9	12 12	15 14	19 17	22 2	25 023	28 26
15	1791	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	9	11 11	14 14	17 17	20 19	23 22	26 25
16	2041	2068	2098	2122	2148	2175	2201	2227	2253	2279	3	6	8	11	14	16	19	22	24
17	2304	2330	2365	2380	2405	2430	2455	2480	2504	2529	3	5	8	10	13	16 15	18 18	21 20	23
											3	5	8	10	12	15	17	20	22
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2 2	5 4	7 7	9	12 11	14 14	17 16	19 18	21 21
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2 2	4	7 6	9	11 11	13 13	16 15	18 17	20 19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3540	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3675	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802 3979	3820 3997	3838 4014	3856	3874 4048	3892 4065	3909 4082	3927 4099	3945 4116	3962	2 2	4	5	7	9	11 10	12 12	14 14	16
25 26	4150	4166	4182	4031 4200	4216	4232	4279	4265	4281	4133 4298	$\frac{2}{2}$	3	5 5	7	9 8	10	11	13	15 15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	1548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5142	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5238	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35				5478			5514		5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38 39	5798 5911	5809 5922	5821 5933	532 5944	5843 5922	5855 5966	5866 5977	5877 5988	5888 5999	5899 6010	1 1	2 2	3	5 4	6 5	7 7	8	9 9	10 10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6235	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1 1	2	3	4	5	6	/	7	8
47 48	6721 6812	6730 6821	6739	6749	6758 6848	6767 6857	6776	6785 6875	6794 6884	6803 6893	1 1	2	3	4	5 4	5	6	7 7	8
48	6902	6911	6830 6920	6839 6928	6937	6946	6866 6955	6964	6972	6981	1 1	2 2	3	4 4	4 4	5 5	6	7	8 8
	0902	0911	0920	0928	0937	0240	0933	0204	0912	0701	1		5		7	5	Ľ		O

149

લઘુગણક

કોષ્ટક 1 ચાલુ

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7127	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7530	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7768	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	6	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8367	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	2	4	5	6
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9267	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85					9315						1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685 9731	9689 9736	9694 9741	9699 9745	9703 9750	9708 9754	9713 9759	9717 9763	9722 9768	9727 9773	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 1	1 1	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	2 2	3	3	4	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$
												_					_		
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	2	3	3	4	4
96	9823	9827 9872	9832	9836	9841	9845	9850 9894	9854	9859 9903	9863 9908	0	1	1 1	2	2	3	3	4	4
98	9868 9912	9872	9877 9921	9881 9926	9886 9930	9890 9934	9894	9899 9943	9903	9908	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	2 2	2 2	3	3	4	4
99	9912	9917	9921	9920	9930	9934	9983	9943	9948	9932	0	1 1	1	$\begin{bmatrix} \frac{2}{2} \end{bmatrix}$	2	3	3	3	4
	7,50	7701	7703	7,00	77/4	77/0	1,703	7,01	,,,,,	1,,,,,		1	1			J		<i>J</i>	7

પ્રતિલઘુગણક

કોષ્ટક 2

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1479	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35		2244	2249	2254	2259	2265	2270	275	2280	2286	1	1	2	2	3	3	4	4	5
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	3	4	5	6	6
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	3	4	5	6	6

પ્રતિલઘુગણક

કોષ્ટક 2 ચાલુ

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
.54	3467	3475	3483	3491	3499	3508	3513	3524	3532	3540	1	2	2	3	4	5	6	6	7
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	l î	2	3	3	4	5	6	7	8
1				5050							^						`		
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
	2001	2000	2000	4000	4010	4005	4026	1016	40.5.5	1064	١.	_	2	١.	_		_	_	
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	5	7	8	9	10
.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	4	5	7	8	9	10
											١.	_		_		_			
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
.78	6026	6039	6053	6067	6082	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
25	7079	7096	7112	7129	7145	761	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	$\frac{2}{2}$	3 4	5	7	9	11	12	14	
			7798						7907			4	5	7	9		13		16
.89	7765	7780	1/98	7816	7834	7852	7870	7889	1/30/	7925	2	4	J	′	9	11	13	14	16
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
.93		8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
./*	0,10	0,50	0,50	0,,0	5,50	0010	0051	0051	55,2	50,2	-	r	J	ັ	10	14	'	10	10
.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
.96	9120	9141	9162	9186	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9525	2	4	7	9	11	13	15	17	20
.98	9550	9575	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
.99		9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20
	7114	7175	7017	7070	1 7003	/300	1,,,,,	7731		1,7,1,	<u> </u>		,	<u>Ľ</u> _	1.1	1-7	L'	10	20